Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2
For this use the law of sines:


cross-multiply:
16×sin (J) = 11×0.97
sin(J) = 10.72/16
sin(J) = 0.67
hit the "arcsin" button on your calculator:

therefore answer B. 42 is the correct answer!!
Aplicando la función, los valores numéricos son
:




La función es dada por:

Para los valores numéricos, reemplazamos x, luego:




Un problema similar es dado en brainly.com/question/7037337
Answer:
Option 3
Step-by-step explanation:
(f/g)(x) = f(x)/g(x)
Since g(x) is in the denominator, it can't be 0.
(Functions is undefined when the denominator = 0)
This fraction becomes undefined when:
-14x² - 1 = 0
14x² = -1
x² = -1/14
So x² should not be -1/14