Answer:
= 20.82 g of BaCl2
Explanation:
Given,
Volume = 200 mL
Molarity = 0.500 M
Therefore;
Moles = molarity × volume
= 0.2 L × 0.5 M
= 0.1 mole
But; molar mass of BaCl2 is 208.236 g/mole
Therefore; 0.1 mole of BaCl2 will be equivalent to;
= 208.236 g/mol x 0.1 mol
= 20.82 g
Therefore, the mass of BaCl2 in grams required is 20.82 g
Answer:
Explanation:
{\displaystyle {}^{n}x}{}^{n}x, for n = 2, 3, 4, …, showing convergence to the infinitely iterated exponential between the two dots
In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. It is the next hyperoperation after exponentiation, but before pentation. The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration.
Under the definition as repeated exponentiation, the notation {\displaystyle {^{n}a}}{\displaystyle {^{n}a}} means {\displaystyle {a^{a^{\cdot ^{\cdot ^{a}}}}}}{\displaystyle {a^{a^{\cdot ^{\cdot ^{a}}}}}}, where n copies of a are iterated via exponentiation, right-to-left, I.e. the application of exponentiation {\displaystyle n-1}n-1 times. n is called the "height" of the function, while a is called the "base," analogous to exponentiation. It would be read as "the nth tetration of a".
Tetration is also defined recursively as
{\displaystyle {^{n}a}:={\begin{cases}1&{\text{if }}n=0\\a^{\left(^{(n-1)}a\right)}&{\text{if }}n>0\end{cases}}}{\displaystyle {^{n}a}:={\begin{cases}1&{\text{if }}n=0\\a^{\left(^{(n-1)}a\right)}&{\text{if }}n>0\end{cases}}},
allowing for attempts to extend tetration to non-natural numbers suc
Answer: el estudio de la síntesis, estructura, reactividad y propiedades del diverso grupo de compuestos químicos construidos principalmente de carbono
Explanation:Hope I helped:)
Answer:
You can view more details on each measurement unit: molecular weight of CaCl2 or grams This compound is also known as Calcium Chloride. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles CaCl2, or 110.984 grams.
That would be the proton. The number of protons in the nucleus determine which element it is and its properties.