I have attached a photo of the structure.
You can get better at solving problems like this by practicing a lot!
Answer:
d. 127 g/mol.
Explanation:
Hello!
In this case, since we have the amount of molecules of this this compound, we are able to compute the moles out there by using the Avogadro's number:

Which correspond to the moles of X2. Then, by using the mass we are able to compute the molar mass of X2:

It means that the atomic mass of X halves the molar mass of X2, which is then d. 127 g/mol.
Best regards!
Answer:
9 moles of ions
Explanation:
Our compound is: CaCl₂(s)
We dissociate it:
CaCl₂(aq) → Ca²⁺ (aq) + 2Cl⁻(aq)
Per 1 mol of chloride, we have 1 mol of calcium cation and 2moles of chlorides, so in total we have 3 moles of ions.
Therefore in 3 moles of chloride, we would have 9 moles of ions (3 . 3)
Double replacement :
2Na₃PO₄+3CaCl₂⇒6NaCl + Ca₃(PO₄)₂
<h3>Further explanation</h3>
1. A single replacement reaction is a chemical reaction in which one element replaces the other elements of a compound to produce new elements and compounds
2. Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
3. Combination/syntesis : 2 or more reactants combine to form a new compound
4. Decomposition : the reactant is decomposed into 2/more products
If we look at the reaction options available, all of them can be included in the double replacement reaction, but we only choose the reaction from Sodium phosphate and Calcium chloride which leads to options: C because it is balanced (from the number of atoms in the same reactant and product) and is in accordance with the chemical formula of each compound (both products and reactants)