2(x+-9)
2(x-9)
Distribute
2x-18 is the simplified expression
What are the values of mode and median in the following set of numbers? 1,3,3,6,6,5,4,3,1,1,2 Mode: 1, 2, Median: 2 Mode: 1,3, M
AURORKA [14]
<h3><u>given</u><u>:</u></h3>
<u>
</u>
<h3><u>to</u><u> </u><u>find</u><u>:</u></h3>
the mode and median of the given numbers set.
<h3><u>solution</u><u>:</u></h3><h3><u>mode</u><u>:</u></h3>
the most frequently occurred number.

<h3><u>median</u><u>:</u></h3>
first arrange all the numbers in either decending or ascending order, then find the number in the middle.


<u>hence</u><u>,</u><u> </u><u>the</u><u> </u><u>median</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>following</u><u> </u><u>data</u><u> </u><u>set</u><u> </u><u>is</u><u> </u><u>3</u><u> </u><u>and</u><u> </u><u>the</u><u> </u><u>mode</u><u> </u><u>is</u><u> </u><u>1</u><u> </u><u>and</u><u> </u><u>3</u>
sin(4π21). Explanation: Notice that this fits the form of the sine subtraction formula: sin(A−B)=sin(A)cos(B)−cos(A)sin(B).
Hey there! :D
2/10s= .2
The place after the decimal is the tenth so place. That fraction represents “two tenths”.
I hope this helps!
~kaikers
Since the two triangles are similar

Also,
