Q1. The answer is removing metabolic wastes from the body.
Excretion is the process through which metabolic wastes are removed from the body. Skin, lungs, and greatly kidney, which are the part of the excretory system, are responsible for excretion of metabolic waste in vertebrates. Invertebrates have special systems (insects, for example, have Malpighian tubules) or use skin to excrete metabolic wastes while single-celled organisms use the whole surface of the cell.
Q2. The answer is some animals live in dry or salty environments.
Kidneys are important organs in maintaining water balance. Some animals that live in dry and salty environments must preserve water in order to maintain homeostasis. They drink and eat food with more salt in it. If they lose that precious water in such conditions, the amount of different salts in the organism will increase and it will affect a normal functioning of the organism.
Q3. The answer is simple diffusion across the skin.
Ammonia is very toxic substance and a lot of water is needed for its neutralisation and excretion. Therefore, animals that live in water excrete ammonia directly in the water. Many freshwater invertebrates eliminate ammonia through skin. In animals that do not live in the water, kidneys and liver help conversion of ammonia into urea which is then excreted.,
Q4. They both actively pump salt across their gills.
Both saltwater and freshwater fishes use gills to eliminate nitrogenous wastes while kidneys have a little role in the elimination of this kind of the waste. Salt that is lost is replaced by active transport of salt ions into the body by the gills.
Q5. The answer is They both convert nitrogenous wastes to uric acid.
A garden spider and a sparrow are terrestrial organisms. They do not live in the water and do not excrete metabolic wastes in the water. It is known that ammonia is toxic nitrogenous substance and a lot of water is needed for its excretion. For water organisms this is not a problem, they are surrounded by water, but terrestrial organisms, such as the garden spider and the sparrow, have no such amount of water in the environment, so their kidneys and liver must convert ammonia into urine which can then easily be excreted.
Individuals with glucose-6-phosphate dehydrogenase deficiency have increased resistance to malaria because the parasite does not survive well in cells with oxidative stress.
<h3>What is the link between G6P deficiency and malaria?</h3>
- Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disorder.
- G6PD protects cells from oxidative damage especially the RBCs whose main function is to carry oxygen.
- Mutation in the gene results in G6PD deficiency leading to oxidative stress which can lead to anemia (iron deficiency) as there is breakdown of RBCs.
- However, G6PD deficiency is quite common in parts of Africa, Middle East, and South Asia, which are the regions of high malaria endemism.
- This is due to natural selection in which G6PD deficiency is not eliminated from the population as it can protect people from malaria infection.
- Malaria parasite <em>Plasmodium</em> species does not survive well in cells with oxidative stress.
Learn about malaria here:
brainly.com/question/17033567
#SPJ4
the true answer is C. Sea levels rose over 300 feet