Answer:
The C. elegans embryo is a powerful model system for studying the mechanics of metazoan cell division. Its primary advantage is that the architecture of the syncytial gonad makes it possible to use RNAi to generate oocytes whose cytoplasm is reproducibly (typically >95%) depleted of targeted essential gene products via a process that does not depend exclusively on intrinsic protein turnover. The depleted oocytes can then be analyzed as they attempt their first mitotic division following fertilization. Here we outline the characteristics that contribute to the usefulness of the C. elegans embryo for cell division studies. We provide a timeline for the first embryonic mitosis and highlight some of its key features. We also summarize some of the recent discoveries made using this system, particularly in the areas of nuclear envelope assembly/ dissassembly, centrosome dynamics, formation of the mitotic spindle, kinetochore assembly, chromosome segregation, and cytokinesis.
1. The C. elegans embryo as a system to study cell division
The C. elegans embryo is a powerful model system for studying the mechanics of metazoan cell division. Its primary advantage is that the syncytial gonad makes it possible to use RNA interference (RNAi) to generate oocytes whose cytoplasm is reproducibly (>95%) depleted of targeted essential gene products. Introduction of dsRNA rapidly catalyzes the destruction of the corresponding mRNA in many different systems. However, depletion of pre-existing protein is generally a slow process that depends on the half-life of the targeted protein. In contrast, in the C. elegans gonad, the protein present when the dsRNA is introduced is depleted by the continual packaging of maternal cytoplasm into oocytes (Figure 1). Since depletion relies on the rate of embryo production instead of protein half-life, the kinetics tend to be similar for different targets. By 36-48 hours after introduction of the dsRNA, newly formed oocytes are typically >95% depleted of the target protein.
Explanation:
I think the answer is C. increasing cellular respiration in muscle tissues
hope i can help ✨
Answer:
She should look for a cell wall outside the cell membrane.
Explanation:
D) El Nino because EL Nina is the cooling of the water.Photosynthesis is to do with plants and Tsunami is a storm
Answer:
Genetic drift
Explanation:
Genetic drift is defined as the random change in allelic frequencies from one generation to the other.
Genetic drift is an evolutionary mechanism in which the allelic frequencies in a population change through many generations. Its effects are harder in a small-sized population, meaning that this effect is inversely proportional to the population size. Genetic drift results in some alleles loss, even those that are beneficial for the population, and the fixation of some other alleles by an increase in their frequencies. The final consequence is to <u>randomly</u> fixate one of the alleles. Low-frequency alleles are the most likely to be lost. Genetic drift results in a loss of genetic variability within a population.
Genetic drift has important effects on a population when this last one reduces its size dramatically because of a disaster -bottleneck effect- or because of a population split -founder effect-.