The total means add so,
42 + 75 + 189 + 301 + 728 = 1,335
Answer is C.
The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
The given system of equations:
x + 2y = 1............(1)
-3x - 2y = 5..........(2)
This can be written in matrix form as shown:
![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Find the determinant of ![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D)
![\triangle = 1(-2) - 2(-3)\\\triangle = -2+6\\\triangle = 4](https://tex.z-dn.net/?f=%5Ctriangle%20%3D%201%28-2%29%20-%202%28-3%29%5C%5C%5Ctriangle%20%3D%20-2%2B6%5C%5C%5Ctriangle%20%20%3D%204)
![\triangle_x = \left[\begin{array}{ccc}1&2\\5&-2\end{array}\right]\\\triangle_x = 1(-2)-2(5)\\\triangle_x = -2-10\\\triangle_x =-12](https://tex.z-dn.net/?f=%5Ctriangle_x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_x%20%3D%201%28-2%29-2%285%29%5C%5C%5Ctriangle_x%20%3D%20-2-10%5C%5C%5Ctriangle_x%20%3D-12)
![\triangle_y = \left[\begin{array}{ccc}1&1\\-3&5\end{array}\right]\\\triangle_y = 1(5)-1(-3)\\\triangle_y = 5 + 3\\\triangle_y =8](https://tex.z-dn.net/?f=%5Ctriangle_y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C-3%265%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_y%20%3D%201%285%29-1%28-3%29%5C%5C%5Ctriangle_y%20%3D%205%20%2B%203%5C%5C%5Ctriangle_y%20%3D8)
![x = \frac{\triangle_x}{\triangle} \\x = \frac{-12}{4} \\x = -3](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B%5Ctriangle_x%7D%7B%5Ctriangle%7D%20%5C%5Cx%20%3D%20%5Cfrac%7B-12%7D%7B4%7D%20%5C%5Cx%20%3D%20-3)
![y = \frac{\triangle_y}{\triangle} \\y = \frac{8}{4} \\y = 2](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B%5Ctriangle_y%7D%7B%5Ctriangle%7D%20%5C%5Cy%20%3D%20%5Cfrac%7B8%7D%7B4%7D%20%5C%5Cy%20%3D%202)
The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
Learn more here: brainly.com/question/4428059
<span>2x - 3y - 3z = 8
We've been given the normal vector to the plane <2, -3, -3> and a point within the plane (1, -5, 3). In general if you've been given both the normal vector <a,b,c> and a point (e,f,g) within the plane, the expression for the plane will be:
ax + by + cz = d
and you can compute d by:
d = ae + bf + cg
So let's calculate d:
d = ae + bf + cg
d = 2*1 + -3*-5 + -3*3
d = 2 + 15 + -9
d = 8
And the equation for the plane is
2x - 3y - 3z = 8</span>
Answer:
$909.50
Step-by-step explanation:
$850 x 7% = $59.50 (tax amount)
850 x (1+ 0.07) = $909.50