Given:
A(3,0)
B(1,-2)
C(3,-5)
D(7,-1)
1) reflect across x=-4
essentially calculate the difference between the x=-4 line and Px and "add" it in the other direction to x=-4
A(-4-(3-(-4)),0)=A(-11,0)
B(-4-(1-(-4)),-2)=B(-9,-2)
C(-4-(3-(-4),-5))=C(11,-5)
D(-4-(7-(-4)),-1)=D(-15,-1)
2) translate (x,y)->(x-6,y+8)
A(-3,8)
B(-5,6)
C(-3,3)
D(1,7)
3) clockwise 90° rotation around (0,0), flip the x&y coordinates and then decide the signs they should have based on the quadrant they should be in
A(0,-3)
B(-2,-1)
C(-5,-3)
D(-1,-7)
D) Dilation at (0,0) with scale 2/3, essentially multiply all coordinates with the scale, the simple case of dilation, because the center point is at the origin (0,0)
A((2/3)*3,(2/3)*0)=A(2,0)
B((2/3)*1,(2/3)*-2)=B(2/3,-4/3)
C((2/3)*3,(2/3)*-5)=C(2,-10/3)
D((2/3)*7,(2/3)*-1)=D(14/3,-2/3)
Answer:
The only solution can be (0,-3) point.
Step-by-step explanation:
We have to judge whether the points in options are the solution to the graphed inequality or not.
The first point is (5,-5) which not included in the shaded region of the graph. Hence, it can not be a solution.
The second point is (6,0) which not included in the shaded region of the graph. Hence, it can not be a solution.
The third point is (0,-5) which not included in the shaded region of the graph. Hence, it can not be a solution.
The fourth point is (0,-3). It is on the firm red line which is included in the shaded region of the graph. Hence, it is a solution.
Therefore, the only solution can be (0,-3) point. (Answer)
Answer: Choice A
Set the radicand (stuff under the radical) greater than or equal to 0. Solve x+11 >= 0 for x to get x >= -11
We can represent the cost of the notebooks with by saying 0.75n, and the cost of the pens by saying 0.55p.
0.75n+0.55p will be the total cost before tax. Now, we need to add on tax. Tax will be 0.0625 times the total amount, so we can represent the cost by saying
(0.75n+0.55p) + 0.0625(0.75n+0.55p), so the answer is B.