First game= 128
Second game= 305
Third game= 490
Add the points per game together.
= 128 + 305 + 490
= 923 points
ANSWER: He scored 923 points during the three games.
Hope this helps! :)
Answer:
The last answer on your last image
Step-by-step explanation:
La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.
<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>
En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:
(10 - x) + 2 · x = 17
Donde x se mide en centímetros.
A continuación, despejamos x en la ecuación descrita:
10 + x = 17
x = 7
Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:
A = b · h
Donde:
- b - Base del rectángulo, en centímetros.
- h - Altura del rectángulo, en centímetros.
- A - Área del rectángulo, en centímetros cuadrados.
A = (10 - 7) · 10
A = 3 · 10
A = 30
El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.
Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403
#SPJ1
Factor ||5||−||−5||−(−5)|5|-|-5|-(-5) = 25 =5² ( 2 prime factors, 1 distinct)
Divisors = 1,3,25 (3 divesors)