The correct answer is: acceleration.
In fact, the slope of the graph of velocity versus time corresponds to the ratio between the variation of v and the variation of t:

But this is exactly the definition of acceleration:

, so acceleration is the correct answer.
Answer:
electron λ = 12.5 nm
, bullet λ = 1.11 10⁻³³ m and golf ball λ = 4.7 10⁻³⁴ m
Explanation:
The Broglie wave duality principle states that all matter has wave and particle properties, it is expressed by the equation
p = h / λ
Where lam is called broglie wavelength
Let's use the definition of momentum
p = mv
Let's calculate the wavelengths
-Electron
mv = h /λ
λ = h / mv
λ = 6.63 10⁻³⁴ / (9.1 10⁻³¹ 5.81 10⁶)
λ = 1.25 10⁻¹⁰ m
λ = 12.5 nm
This is the X-ray region
-bullet
λ = 6.63 10⁻³⁴ / (1.90 10⁻³ 313)
λ = 1.11 10⁻³³ m
It is too small, only particle characteristics are observed
-Golf ball
λ = 6.63 10⁻³⁴ / (4.50 10⁻² 31.3)
λ = 4.7 10⁻³⁴ m
Too small, only particle characteristics are visible
Answer:
Vf = 10.76 m/s
Explanation:
Train kinematics
The train moves with uniformly accelerated movement
Formula (1)
Vf: Final speed (m/s)
V₀: Inital speed (m/s)
t: time in seconds (s)
a: acceleration (m/s²)
Movement from t = 0 to t = 5.2s
We replace in formula (1)
4.6 = 0 + a*5.2
a = 4.6/5.2 = 0.88 m/s²
Movement from t = 5.2s to t = 5.2s + 7s = 12.2s
We replace in formula (1)

Vf = 10.76 m/s
Answer:
All of teh above except A
Explanation:
Answer:
The induced emf is 
Explanation:
From the question we are told that
The number of turn is 
The diameter of the coil is 
The uniform magnetic at initial is 
The uniform magnetic at initial is 
The time taken is
The angle the magnetic field makes with vertical is 
Generally induced emf is mathematically represented as

where
is the change magnetic flux
Magnetic flux is mathematically represented as


Substituting this above


Where B is the magnetic field and A is the area which is mathematically evaluated as

Substituting values


From the equation of emf

dB = 
So

substituting values

