The work to stretch a spring from its rest position is
(1/2) (spring constant) (distance of the stretch)²
E = 1/2 k x² .
You said it takes 1700 joules to stretch the spring 3 meters from its rest position, so we can write
1700 joules = 1/2 k (3m)²
1 joule = 1 newton-meter
1700 N-m = 1/2 k (3m)²
Multiply each side by 2: 3400 N-m = k · 9m²
Divide each side by 9m² k = 3400 N-m / 9m²
= (377 and 7/9) newton per meter
Answer:

Explanation:
It is given that,
Diameter of cylinder, d = 6.6 cm
Radius of cylinder, r = 3.3 cm = 0.033 m
Acceleration of the string, 
Displacement, d = 1.3 m
The angular acceleration is given by :



The angular displacement is given by :



Using the third equation of rotational kinematics as :

Here, 



Since, 1 rad/s = 9.54 rpm
So,

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.
Because the elevator moves at a constant speed, it's in equilibrium and the net force acting on it is zero. Then the tension in the cable exactly equals the magnitude of the elevator's weight, which is
(3000 kg) (9.80 m/s²) = 29,400 N
Answer:

Explanation:
If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s
so here the total time of the motion above the top point of pole is given as

now we have



so this is the speed at the top of flag pole
now we have



now the height of flag pole is given as


