In order to calculate the value of t, we can use the given formula with the values P = 6000, A = 2P and i = 11% = 0.11:

Therefore the time needed is t = 6.3 years.
Answer: f(x)=2-x^2
Step-by-step explanation:
The quadratic equation is
y=ax^2+bx+c
and c is equal to the y-intercept.
in the twi graphs shown both have the same shape but different y-intervepts.
c(the y-intercept) in the first graph is 5 and in the second graph(F) is 2.
Answer:
i think 55/14 if not srry
Step-by-step explanation:
The parabolic motion is an illustration of a quadratic function
The equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
<h3>How to model the function?</h3>
Given that:
x stands for time and y stands for height in feet
So, we have the following coordinate points
(x,y) = (5,0), (11,0) and (10,80)
A parabolic motion is represented as:
y =ax^2 + bx + c
At (5,0), we have:
25a + 5b + c = 0
c= -25a - 5b
At (11,0), we have:
121a + 11b + c = 0
Substitute c= -25a - 5b
121a + 11b -25a - 5b = 0
Simpify
96a + 6b = 0
At (10,80), we have:
100a + 10b + c = 80
Substitute c= -25a - 5b
100a + 10b - 25a -5b = 80
75a -5b = 80
Divide through by 5
15a -b = 16
Make b the subject
b = 15a + 16
Substitute b = 15a + 16 in 96a + 6b = 0
96a + 6(15a + 16) = 0
Expand
96a + 90a + 96 = 0
This gives
186a = -96
Solve for a
a = -16/31
Recall that:
b = 15a + 16
So, we have:
b = -15 * 16/31 + 16
b =-240/31 + 16
Take LCM
b =(-240 + 31 * 16)/31
[tex]b =256/31
Also, we have:
c= -25a - 5b
This gives
c= 25*16/31 - 5 * 256/31
Take LCM
c= -880/31
Recall that:
y =ax^2 + bx + c
This gives
y = -16/31x^2 + 256/31x - 880/31
Hence, the equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
Read more about parabolic motion at:
brainly.com/question/1130127
Answer:
30 degrees
Step-by-step explanation:
u dot v=1*4+1*4+1*4+0*4=4+4+4+0=12
|u|=sqrt(1^2+1^2+1^2+0^2)=sqrt(3)
|v|=sqrt(4^2+4^2+4^2+4^2)=sqrt(4*4^2)=2*4=8
cos(theta)=u dot v/(|u||v|)
cos(theta)=12/(sqrt(3)*8)
cos(theta)=3/(sqrt(3)*2)
cos(theta)=sqrt(3)/2
theta=30 degrees