1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
3 years ago
9

There are 64 cookies in a jar. The probability of randomly choosing an oatmeal cookie from the jar is 37.5%. How many of the coo

kies are NOT oatmeal cookies?
Mathematics
2 answers:
Kitty [74]3 years ago
8 0

Answer:

26.5%

Step-by-step explanation:

All you have to do is subtract 64 - 37.5 which would get you to 26.5%. Hope this helps.

Dmitry [639]3 years ago
4 0

Answer:

40 cookies aren't oatmeal

Step-by-step explanation:

100% (all of the cookies) - 37.5% (the ones that are oatmeal) = 62.5% (the percentage amount of cookies that aren't oatmeal)

The number of cookies (64) * 0.625 (62.5% in decimal form) = 40 cookies that aren't oatmeal

You might be interested in
Can somebody help me with thiss??
Strike441 [17]
I guess it’s options (d)
8 0
3 years ago
Help! How would I solve this trig identity?
NeTakaya

Using simpler trigonometric identities, the given identity was proven below.

<h3>How to solve the trigonometric identity?</h3>

Remember that:

sec(x) = \frac{1}{cos(x)} \\\\tan(x) = \frac{sin(x)}{cos(x)}

Then the identity can be rewritten as:

sec^4(x) - sen^2(x) = tan^4(x) + tan^2(x)\\\\\frac{1}{cos^4(x)} - \frac{1}{cos^2(x)}  = \frac{sin^4(x)}{cos^4(x)}  + \frac{sin^2(x)}{cos^2(x)} \\\\

Now we can multiply both sides by cos⁴(x) to get:

\frac{1}{cos^4(x)} - \frac{1}{cos^2(x)}  = \frac{sin^4(x)}{cos^4(x)}  + \frac{sin^2(x)}{cos^2(x)} \\\\\\\\cos^4(x)*(\frac{1}{cos^4(x)} - \frac{1}{cos^2(x)}) = cos^4(x)*( \frac{sin^4(x)}{cos^4(x)}  + \frac{sin^2(x)}{cos^2(x)})\\\\1 - cos^2(x) = sin^4(x) + cos^2(x)*sin^2(x)\\\\1 - cos^2(x) = sin^2(x)*sin^2(x) + cos^2(x)*sin^2(x)

Now we can use the identity:

sin²(x) + cos²(x) = 1

1 - cos^2(x) = sin^2(x)*(sin^2(x) + cos^2(x)) = sin^2(x)\\\\1 = sin^2(x) + cos^2(x) = 1

Thus, the identity was proven.

If you want to learn more about trigonometric identities:

brainly.com/question/7331447

#SPJ1

7 0
2 years ago
Jorge wants to buy new vinyl flooring for his kitchen. The kitchen floor is 12 feet by 15 feet. How many square yards is the flo
adoni [48]

Answer:

180 square yards

Step-by-step explanation:

5 0
3 years ago
un repartidor de refrescos entrego 90 cajas en tres pedidos. En le primero dejo el doble que en el segundo, y en el segundo, el
GenaCL600 [577]

Answer:

Step-by-step explanation:

Djjirjtti

5 0
2 years ago
Answer with solution
adelina 88 [10]
In general, the scalar multiple of k times u,<span> is this: 

</span>k\vec u = k(ux, uy)=(Kux,Kuy) 

So, here's how we find 3\vec v 

3\vec v = 3 * (2,4) = (3*2,3*4) &#10;&#10;= (6,12) 

The answer is <span><span>(6,12).</span></span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • Molly and Nancy disagree about the value of the expression 2+3×4. Molly thinks it is 20 and Nancy thinks it is 14.how could
    14·2 answers
  • Write the equation of the circle with the given center and radius: (h,k)= (-4,6), r=7
    8·1 answer
  • Three brothers have some money. The oldest has 3/5 of the total, and the youngest has 1/10 of the total. If the oldest brother h
    6·2 answers
  • What is the radius and diameter of the following circle?<br> 11 cm
    10·1 answer
  • Find the greatest common factor for the list of terms <br> X^5, x^6, x^8
    8·1 answer
  • A rectangular Persian carpet has a perimeter of 192 inches. The length of the carpet is 18 inches more than the width. What are
    7·2 answers
  • An electrician cuts a 136 ft piece of cable. one piece is 16 ft less that 3 times the length of the other pieces. Find the lengt
    12·1 answer
  • Write an equation of a line with the given slope and y-intercept. slope: - 13 y-intercept: –1
    12·1 answer
  • Please help i will give brainly?
    14·1 answer
  • Please Show the algebraic work steps thank you
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!