Answer:
No, the reference point selected for the properties of a substance does't have any effect on thermodynamic analysis.
Step-by-step explanation:
Consider the provided information.
We need to determine that the reference point selected for the properties of a substance have any effect on thermodynamic analysis.
The answer for this question is No.
The reference point selected for the properties of a substance does't have any effect on thermodynamic analysis.
Because in thermodynamic analysis we are deal with the change in the properties.
If we are doing calculation, the reference state chosen is irrelevant as long as we use values in a single consistent array of tables and charts.
Hence, The reference point selected for the properties of a substance does't have any effect on thermodynamic analysis.
Answer:
The rate of change of the height is 0.021 meters per minute
Step-by-step explanation:
From the formula

Differentiate the equation with respect to time t, such that


To differentiate the product,
Let r² = u, so that

Then, using product rule
![\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h\frac{du}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Bu%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%5Cfrac%7Bdu%7D%7Bdt%7D%5D)
Since 
Then, 
Using the Chain's rule

∴ ![\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h(\frac{du}{dr} \times \frac{dr}{dt})]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Bu%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%28%5Cfrac%7Bdu%7D%7Bdr%7D%20%5Ctimes%20%5Cfrac%7Bdr%7D%7Bdt%7D%29%5D)
Then,
![\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Br%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%282r%29%20%5Cfrac%7Bdr%7D%7Bdt%7D%5D)
Now,
From the question


At the instant when 
and 
We will determine the value of h, using





Now, Putting the parameters into the equation
![\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}]](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Br%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20h%282r%29%20%5Cfrac%7Bdr%7D%7Bdt%7D%5D)
![236 = \frac{1}{3}\pi [(99)^{2} \frac{dh}{dt} + (\frac{20}{363\pi }) (2(99)) (7)]](https://tex.z-dn.net/?f=236%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5B%2899%29%5E%7B2%7D%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B20%7D%7B363%5Cpi%20%7D%29%20%282%2899%29%29%20%287%29%5D)
![236 \times 3 = \pi [9801 \frac{dh}{dt} + (\frac{20}{363\pi }) 1386]](https://tex.z-dn.net/?f=236%20%5Ctimes%203%20%3D%20%5Cpi%20%5B9801%20%5Cfrac%7Bdh%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B20%7D%7B363%5Cpi%20%7D%29%201386%5D)






Hence, the rate of change of the height is 0.021 meters per minute.
Answer:
y = -3
Step-by-step explanation:
Desmos
I would go with A but I am not 100% sure so you may want to check however you can.
Given:
Number of students = 35
Two out of every five boys in the club are boys.
To find:
The number of students in the club that are boys.
Solution:
Two out of every five boys in the club are boys. It means, the ratio of boys to the total number of student is 2:5.
Let the number of boys be 2x and number of students be 5x.
According to the question,


Now, the number of boys is


Therefore, 14 students in the club are boys.