1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
3 years ago
14

A university is applying classification methods in order to identify alumni who may be interested in donating money. The univers

ity has a database of 58,205 alumni profiles containing numerous variables. Of these 58,205 alumni, only 576 have donated in the past. The university has oversampled the data and trained a random forest of 100 classification trees. For a cutoff value of 0.5, the following confusion matrix summarizes the performance of the random forest on a validation set:
Predicted
Actual No Donation Donation
Donation 268 20
No Donation 5375 23439
The following table lists some information on individual observations from the validation set:
0.8
Observation ID Actual Class Probability of Donation Predicted Class
A Donation 0.8 No Donation
B No Donation 0.1 Donation
C No Donation 0.6 Donation
Compute the values of accuracy, sensitivity, specificity, and precision.
Mathematics
1 answer:
gtnhenbr [62]3 years ago
4 0

Answer:

Accuracy = 0.81

Sensitivity = 0.93

Specificity = 0.81

Precision = 0.047

Step-by-step explanation:

Given the confusion matrix :

Actual_______ Donation___ No Donation

Donation______ 268 (TP) _______ 20 (FN)

No Donation ___5375 (FP) _____23439 (TN)

Accuracy is calculated as :

(TP + TN) / (TP+TN+FP+FN)

(268 + 23439) / (268 + 23439 + 5375 + 20)

ACCURACY = (23707 / 29102) = 0.81

Sensitivity (True positive rate) :

TP ÷ (TP + FN)

268 ÷ (268 + 20)

268 ÷ 288 = 0.93

Specificity (True Negative rate) :

TN ÷ (TN + FP)

23439 ÷ (23439 + 5375)

23439 ÷ 28814

= 0.81

Precision :

TP ÷ (TP + FP)

268 ÷ (268 + 5375)

268 ÷ 5643

= 0.047

You might be interested in
A bakery is collecting data to investigate how changing the price charged for a loaf of bread affects the bakery’s daily profit.
RSB [31]

Considering the vertex of the graph, it is found that the quadratic function that is the best model for the data is given by:

y = -200(x - 4)^2 + 800

<h3>What is the equation of a quadratic function given it’s vertex?</h3>

The equation of a quadratic function, of vertex (h,k), is given by:

y = a(x - h)^2 + k

In which a is the leading coefficient.

Researching the problem on the internet, it is found that the vertex is at point (4,800), hence h = 4 and k = 800.

y = a(x - 4)^2 + 800

It has a value of y = 0 at x = 6, hence:

0 = a(6 - 4)^2 + 800

a = -200

Thus, the model is:

y = -200(x - 4)^2 + 800

More can be learned about quadratic functions at brainly.com/question/24737967

6 0
2 years ago
Differentiate<br> y=(6x)/(1-cot(x))
My name is Ann [436]
\bf y=\cfrac{6x}{1-cot(x)}\implies \cfrac{dy}{dx}=\stackrel{quot ient~ru le}{\cfrac{6[1-cot(x)]~-~6x[-csc^2(x)]}{[1-cot(x)]^2}}&#10;\\\\\\&#10;\cfrac{dy}{dx}=\cfrac{6-6cot(x)~+~6xcsc^2(x)}{[1-cot(x)]^2}
8 0
4 years ago
What is f(-3) for the function f(a)=-2a2-5a+4?
posledela

Answer:

-25

Step-by-step explanation:

2a² - 5a + 4, for f(-3)

2(-3)² -5(-3)+4

2*(-27)+15+4

-54+19

= -25

4 0
3 years ago
Solve the simultaneous equations<br><br> 3x + 2y = 30<br> 3x - y = 21
Mrac [35]

Answer:

x = 8 , y = 3

Step-by-step explanation:

3x + 2y = 30

3x - y = 21      -> y = 3x - 21

3x + 2 (3x - 21) = 30

3x + 6x - 42 = 30

3x + 6x = 30 + 42

9x = 72

x = 72/9 = 8

y = 3*8 - 21 = 24 - 21 = 3

∴ x = 8 & y = 3

3 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Other questions:
  • In the formula that gives the circumference of a circle, which quantity is multiplied by 2Ï€ ?
    7·1 answer
  • Tom ate 1/4 of a pizza. he divided the leftover pizza into pieces each equal to 1/12 of the original pizza. after he gave some f
    14·1 answer
  • Terry owns a triangular piece of land that has three corner fence poles at A, B,and C. The three poles are plotted on a grid in
    13·1 answer
  • In a pet store there are 35 dogs and 14 cats what is the ratio of dogs to cats
    8·2 answers
  • Need the answer asap pls ​
    10·1 answer
  • In factoring by grouping, what would you have for step 3 for the following?
    14·2 answers
  • Multiple Choice Question True or False: The point (0, 3) lies on the x-axis. A True B. False​
    13·1 answer
  • Which best describes the strength of the model?
    12·1 answer
  • Renee calculated 3/6 plus 2/4 and said the answer equaled 5/10. Amanda solved the same problem and said the answer equaled one w
    5·1 answer
  • I’m about to spam questions if you can answer them please do .
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!