1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
5

Cmon answer this please solve it and then list it to greatest to least

Mathematics
1 answer:
VikaD [51]3 years ago
6 0

Answer:

D. 36 C. 33.5 A. 20.5 B. 19.5

Step-by-step explanation:

You might be interested in
What are the next three numbers in this pattern? 729, 243, 81, 27, __, __, __
frez [133]
Divide by 3 each time

so 

#1 is 9, because 27/3 = 9
#2 is 3, because 9/3 = 3
#3 is 1, because 3/3 = 1

So your answer is 9, 3, 1

hope this helps
7 0
3 years ago
Read 2 more answers
Which graph represents the function?
zavuch27 [327]
We are asked to find the graph of the function f(x)=\frac{1}{x-1}-2. When we graph it, we get something like the image attached below. We can see that the one of the curves intersect the y-axis at (0,3), and the only graph that showcases that is the fourth graph. Hope this helps and have a great day!

7 0
3 years ago
You play the following game against your friend. You have 2 urns and 4 balls One of the balls is black and the other 3 are white
Rom4ik [11]

Answer:

Part a: <em>The case in such a way that the chances are minimized so the case is where all the four balls are in 1 of the urns the probability of her winning is least as 0.125.</em>

Part b: <em>The case in such a way that the chances are maximized so the case  where the black ball is in one of the urns and the remaining 3 white balls in the second urn than, the probability of her winning is maximum as 0.5.</em>

Part c: <em>The minimum and maximum probabilities of winning  for n number of balls are  such that </em>

  • <em>when all the n balls are placed in one of the urns the probability of the winning will be least as 1/2n</em>
  • <em>when the black ball is placed in one of the urns and the n-1 white balls are placed in the second urn the probability is maximum, as 0.5</em>

Step-by-step explanation:

Let us suppose there are two urns A and A'. The event of selecting a urn is given as A thus the probability of this is given as

P(A)=P(A')=0.5

Now the probability of finding the black ball is given as

P(B)=P(B∩A)+P(P(B∩A')

P(B)=(P(B|A)P(A))+(P(B|A')P(A'))

Now there can be four cases as follows

Case 1: When all the four balls are in urn A and no ball is in urn A'

so

P(B|A)=0.25 and P(B|A')=0 So the probability of black ball is given as

P(B)=(0.25*0.5)+(0*0.5)

P(B)=0.125;

Case 2: When the black ball is in urn A and 3 white balls are in urn A'

so

P(B|A)=1.0 and P(B|A')=0 So the probability of black ball is given as

P(B)=(1*0.5)+(0*0.5)

P(B)=0.5;

Case 3: When there is 1 black ball  and 1 white ball in urn A and 2 white balls are in urn A'

so

P(B|A)=0.5 and P(B|A')=0 So the probability of black ball is given as

P(B)=(0.5*0.5)+(0*0.5)

P(B)=0.25;

Case 4: When there is 1 black ball  and 2 white balls in urn A and 1 white ball are in urn A'

so

P(B|A)=0.33 and P(B|A')=0 So the probability of black ball is given as

P(B)=(0.33*0.5)+(0*0.5)

P(B)=0.165;

Part a:

<em>As it says the case in such a way that the chances are minimized so the case is case 1 where all the four balls are in 1 of the urns the probability of her winning is least as 0.125.</em>

Part b:

<em>As it says the case in such a way that the chances are maximized so the case is case 2 where the black ball is in one of the urns and the remaining 3 white balls in the second urn than, the probability of her winning is maximum as 0.5.</em>

Part c:

The minimum and maximum probabilities of winning  for n number of balls are  such that

  • when all the n balls are placed in one of the urns the probability of the winning will be least given as

P(B|A)=1/n and P(B|A')=0 So the probability of black ball is given as

P(B)=(1/n*1/2)+(0*0.5)

P(B)=1/2n;

  • when the black ball is placed in one of the urns and the n-1 white balls are placed in the second urn the probability is maximum, equal to calculated above and is given as

P(B|A)=1/1 and P(B|A')=0 So the probability of black ball is given as

P(B)=(1/1*1/2)+(0*0.5)

P(B)=0.5;

5 0
3 years ago
What is an equation of the line that passes through the points (−7,−7) and (−5,−3)?
Lana71 [14]
The answers is -10/13
3 0
3 years ago
Nick currently has 7,200 points in his fantasy baseball league, which is 20% points than Adam. How many points does Adam have?
Dovator [93]
Heya!!!


Answer to your question:

Let Adam's points be x.

Nick has points =7200=20%of x+x

20/100 *x + x=7200

x/5 +x=7200

6x/5=7200

x= 7200*5/6

x=6000

Adam has 6,000 points.

Hope it helps *_*

5 0
3 years ago
Other questions:
  • Graph the line with the equation y=1/6x-7
    9·1 answer
  • A rectangle has a length of 9.00 inches and a width of 4.25 inches. What us the area in square inches? Round to the correct sign
    11·1 answer
  • Which of the binomial below is a factor of this trinomial x^2-5x-14
    10·2 answers
  • A number plus 5 is less than nine.<br><br>show work for this​
    5·1 answer
  • The function f(x) = 4x + 10 models the amount of money Francis makes when babysitting for x hours. How much money will he make
    14·1 answer
  • If I have a ratio 2:6, then what is x/18?<br> f I have a ratio 5:7, then what is (x+3):7?
    7·1 answer
  • Make x the subject of the formula y=7x + 4
    10·2 answers
  • PLEASE HELP WITH THIS
    15·2 answers
  • I WILL GIVE BRAINLIEST ( hurry!1!! :[ )
    12·2 answers
  • A. equals 2<br><br> B. does not exist<br><br> C. equals 0<br><br> D. equals 1
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!