Answer:
![\large\boxed{\ln\sqrt[3]{e^4}=\dfrac{4}{3}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cln%5Csqrt%5B3%5D%7Be%5E4%7D%3D%5Cdfrac%7B4%7D%7B3%7D%7D)
Step-by-step explanation:
![\text{Use}\\\\\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\ln a^n=n\ln a\\\\\ln e=1\\-----------\\\\\ln\sqrt[3]{e^4}=\ln e^\frac{4}{3}=\dfrac{4}{3}\ln e=\dfrac{4}{3}\cdot1=\dfrac{4}{3}](https://tex.z-dn.net/?f=%5Ctext%7BUse%7D%5C%5C%5C%5C%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%5Cfrac%7Bm%7D%7Bn%7D%5C%5C%5C%5C%5Cln%20a%5En%3Dn%5Cln%20a%5C%5C%5C%5C%5Cln%20e%3D1%5C%5C-----------%5C%5C%5C%5C%5Cln%5Csqrt%5B3%5D%7Be%5E4%7D%3D%5Cln%20e%5E%5Cfrac%7B4%7D%7B3%7D%3D%5Cdfrac%7B4%7D%7B3%7D%5Cln%20e%3D%5Cdfrac%7B4%7D%7B3%7D%5Ccdot1%3D%5Cdfrac%7B4%7D%7B3%7D)
Functions cannot have multiple outputs with the same input
Solution: D is the only function
Tan(x)= sin(x)/cos(x), therefore, substitute sin(x)/cos(x) in the expression:
=(cos(x)(sin(x)/cos(x))-1)/cos^2(x)
simplify the 2 cos(x):
=(sin(x)-1)/cos^2(x)
Sin^2(x)+ cos^2(x)=1, sin^2(x)-1=- cos^2(x), substitute in the expression:
= -cos^2(x)/cos^2(x)= -1
Q-2r=4, therefore: q=4+2r.
Plug the value of q into q+r=37, so you get:
4+2r+r=37
3r=37-4=33
3r=33
Therefore: r=11.
q-2r=4, but r=11, so:
q-2(11)=4
q-22=4
Therefore q=26.
Check if the answer is correct using second equation:
q=4+2r=4+2(11)=4+22=26.
So: q=26 and r=11.