Answer:
<em>Observe attached image</em>
<em>Function zeros:</em>
(3, 0), (5, 0)
<em>Vertex:</em>
(4, 2)
<em>Axis of symmetry:</em>
<em>
</em>
Step-by-step explanation:
<u>First factorize the function</u>
![f (x) = -2x ^ 2 + 16x-30](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%20-2x%20%5E%202%20%2B%2016x-30)
<em>Take -2 as a common factor.</em>
![-2(x ^ 2 -8x +15)](https://tex.z-dn.net/?f=-2%28x%20%5E%202%20-8x%20%2B15%29)
<em>Now factor the expression
</em>
You must find two numbers that when you add them, obtain the result -8 and multiplying those numbers results in 15.
These numbers are -5 and -3
Then we can factor the expression in the following way:
![f (x) = -2(x-5)(x-3)](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%20-2%28x-5%29%28x-3%29)
<em><u>The quadratic function cuts the x-axis at </u></em><em>x = 3 and at x = 5.</em>
Now we find the coordinates of the vertex.
For a function of the form
the x coordinate of its vertex is:
![x = \frac{-b}{2a}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%7D%7B2a%7D)
In the function ![f (x) = -2x ^ 2 + 16x-30](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%20-2x%20%5E%202%20%2B%2016x-30)
![a = -2\\b = 16\\c = 30](https://tex.z-dn.net/?f=a%20%3D%20-2%5C%5Cb%20%3D%2016%5C%5Cc%20%3D%2030)
<u>Then the vertice is:</u>
![x = \frac{-16}{2(-2)}\\\\x = 4](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-16%7D%7B2%28-2%29%7D%5C%5C%5C%5Cx%20%3D%204)
The y coordinate of the symmetry axis is
![y = f (4) = -2 (4) ^ 2 +16 (4) -30\\\\y = 2](https://tex.z-dn.net/?f=y%20%3D%20f%20%284%29%20%3D%20-2%20%284%29%20%5E%202%20%2B16%20%284%29%20-30%5C%5C%5C%5Cy%20%3D%202)
The axis of symmetry is a vertical line that cuts the parabola in two equal halves. This axis of symmetry always passes through the vertex.
<u>Then the axis of symmetry is the line</u>
![x = 4](https://tex.z-dn.net/?f=x%20%3D%204)
<u>The solutions and the vertice written as ordered pairs are:</u>
<em>Function zeros:</em>
(3, 0), (5, 0)
<em>Vertex:</em>
(4, 2)