1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
2 years ago
15

The scale of a map is 1:4 000 000. Hint: 1:4 000 000 means that 1cm on the map = 4 000 000 on the ground. The distance between L

eeds and London on this map is 8.125cm. Calculate the actual distance between Leeds and London. Give your answer in kilometres.
Mathematics
1 answer:
GrogVix [38]2 years ago
3 0

Answer:

325 km

Step-by-step explanation:

Given the scale :

1 : 4 ,000, 000

1cm measure in map = 4000000 on the ground

From the map :

Distance between Leeds and London = 8.125 cm

The actual distance on ground can be calculated thus :

1cm = 4,000,000

8.125cm = x

Cross multiply

x = 32500000 cm

Converting to kilometers :

1 km = 100,000 cm

x = 32500000

Cross multiply

100,000x = 32500000

x = 32500000 / 100000

x = 325

Hence, actual distance between Leeds and London is 325 km

You might be interested in
Which is the solution to the inequality?
n200080 [17]

y < –12

Solution:

Step 1: Given inequality is y + 15 < 3.

To find the solution to the inequality.

Step 2: Subtract –15 on both sides to equal the expression.

⇒ y + 15 –15 < 3 –15

Step 2: Using addition identity property, any number adding with zero gives the number itself.

⇒ y + 0 < –12

⇒ y < –12

Hence the solution to the inequality is y < –12.

4 0
3 years ago
Read 2 more answers
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
2 years ago
Can somebody please help me solve this algebra problem: 3p+2r=n solve for p
Lera25 [3.4K]
3p + 2r = n.....subtract 2r from both sides
3p = -2r + n...divide both sides by 3
p = (-2r + n)/3 or p = -2/3r + n/3 or p = -2/3r + 1/3n
8 0
3 years ago
if (3, 2) (2, -3) represents a counterclockwise rotation of the point on a coordinate plane, how many degrees is the rotation?​
Luden [163]

Answer:

90 degrees.

Step-by-step explanation:

Rotate it on Geogebra.

8 0
2 years ago
DUE TODAY!!!!!!!!!!!!!!!
andreyandreev [35.5K]

Answer:

1) b would be easier because it’s 1/2bh and since the base of 10 is easily divisible by 2 you don’t have to deal with fractions.

D=sqrt (x2-x1)^2+(y2-y1)^2

D=10

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • The half-life of a radioactive isotope is the time it takes for a quantity of the isotope to be reduced to half its initial mass
    13·1 answer
  • Similar triangles practice worksheet for problems 1-5 below identify if the triangles are similar or not
    14·1 answer
  • Please help I don’t understand.... I will give brainliest to first and I will thank you!
    7·1 answer
  • Can someone please help me with this one question please??
    10·1 answer
  • What do YOU think about LOVE?
    10·2 answers
  • A tiny statue of Torn Brady is 2 and 8/15 inches tall.
    5·1 answer
  • Find the value of x please
    15·1 answer
  • Divide x² + 11x + 16 by x + 8​
    13·1 answer
  • When a figure is rotated, does every point move the same distance? Explain.
    5·1 answer
  • Find x, round your answer to the nearest integer.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!