Answer:
Vertical component of velocity is 9.29 m/s
Explanation:
Given that,
Velocity of projection of a projectile, v = 22 m/s
It is fired at an angle of 22°
The horizontal component of velocity is v cosθ
The vertical component of velocity is v sinθ
So, vertical component is given by :



Hence, the vertical component of the velocity is 9.29 m/s
Answer:
the force needed to give the truck the acceleration is 29,760 N.
Explanation:
Given;
mass of truck, m = 4800 kg
acceleration of the truck, a = 6.2 m/s²
The force needed to give the truck the acceleration is calculated as;
F = ma
F = 4800 x 6.2
F = 29,760 N
Therefore, the force needed to give the truck the acceleration is 29,760 N.
Answer:
Economics is the study of how societies use scarce resources to produce valuable commodities and distribute them among different people.
Explanation:
The ultimate goal of economic science is to improve the living conditions of people in their everyday lives.
Hope this helps!
Answer:
The correct option is;
The star is moving toward Earth.
Explanation:
The shifting of the wavelength of light wave toward the blue end of the electromagnetic spectrum is termed blue shift.
A blue-shift of an electromagnetic wave corresponds to the wavelength decrease of the wave, which is equivalent increase in energy, resulting in an increase in the observed frequency of the wave.
Astronomers make use of the shifting of the wavelength of a wave to understand the relative motion of galaxies.
The wavelength of an approaching electromagnetic ave shifts towards the blue end of the electromagnetic spectrum because the wavelength is shorter.
The opposite of phenomenon is red-shift.
The correct answer is :
According to classical electrodynamics, light energy is a wave that is absorbed by atoms in a manner similar to how an object absorbs radiant heat. So, the atoms of a metal would absorb more energy the brighter the light was. It would be feasible for an electron in a metal to break free from its atoms if it received enough energy from the incoming wave. The more energy absorbed, the more energetic the metal's released electrons would be. Additionally, no electrons could conceivably be ejected until each atom had enough light energy. Light intensity was far more important than light frequency.
In many respects, the photo-electric effect contradicted this strategy:
- If the light was below a specific frequency, no matter how bright it was, no electrons were released. Increased light intensity increased the number of electrons that were released, but not their energy, if the light was above this frequency.
- Regardless of how weak the light was, electrons were nearly immediately emitted from the metal.
- Even though the intensity of the light was reduced, an increase in its frequency led to more energising electrons leaving the metal.
To learn more about photo-electric effect refer the link:
brainly.com/question/25630303
#SPJ4