It depends on the type of interference.
For constructive interference, add the amplitudes to get |35 + 41| = 76 units.
For destructive, subtract them |35 - 41| = 6 units
The actual question should be did the sound waves escape room?
Yes they can escape the room
- Sound always needs a medium to travel through
- If you close the room form all where that even air can't go outside you will be able to hear no sound coming from room .
Explanation:
<h3>1.) Regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body parts to full function in plants and animals.</h3>
2.) When noise is added to analogue signals, it usually sounds like background hiss. Such noise can not be removed so the original clean signal can not be re-created or re-generated.
The bug was a lot smaller than the car, that's for sure. The car is bigger and sturdier, while the bug is smaller and frail. The bug is so frail, that rather that putting a dent in the car, it splatters all over the car. The bug is very damaged (obviously), while the car just needs a good wash.
Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°