First, we find the slope of the given line.
<span>3x − 4y = 7
-4y = -3x + 7
y = (3/4)x - 7/4
The slope of the given line is 3/4.
The slope of the parallel line is also 3/4.
Now we need the equation of the line that has slope 3/4 and passes through point (-4, -2),
We use the point-slope form of the equation of a line.
y - y1 = m(x - x1)
y - (-2) = (3/4)(x - (-4))
y + 2 = (3/4)(x + 4) <---- check option E. Is the fraction 3/4 not there?
y + 2 = (3/4)x + 3
y = (3/4)x + 1
4y = 3x + 4
3x - 4y = -4 <------ this is choice B.
</span>
Answer:
Option C .
Step-by-step explanation:
We would like to solve the below <u>quadratic </u><u>equation</u><u> </u>,

Step 1 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>


Step 2 : <u>F</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>R</u><u>H</u><u>S</u><u> </u><u>:</u><u>-</u>



Step 3 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>e</u><u>a</u><u>c</u><u>h</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>



<u>H</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>C</u><u> </u><u>i</u><u>s</u><u> </u><u>c</u><u>o</u><u>r</u><u>r</u><u>e</u><u>c</u><u>t</u><u> </u><u>.</u>
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
Answer:
Step-by-step explanation:
sorry this one isnt an easy one. but your answr should be 1.8