Answer:
i think it would be $80 (brainliest??)
Step-by-step explanation:
jane had a total of $200 BEFORE she spent on 2 games
1. $40
2. $40
3. $40
4. $40
5.$40
2 games = $80
3 games = $120 (money she had left)
Answer:
write the question properly and <u>completely</u> then only you will get correct answer
Answer:

Note: to write the domain in interval notation, you'd write [-4,5]
if you need the domain in set-builder notation, then you'd write

------------------------------------------------------------------------------
Explanation:
The domain is the set of possible x input values. Look at the left most point (-4,-1). The x coordinate here is x = -4. This is the smallest x value allowed. The largest x value allowed is x = 5 for similar reasons, but on the other side of the graph.
So that's how I got

(x is between -4 and 5; inclusive of both endpoints)
Writing [-4,5] for interval notation tells us that we have an interval from -4 to 5 and we include both endpoints. The square brackets mean "include endpoint"
Writing

is the set-builder notation way of expressing the domain. The

portion means "x is a real number"
The true statement is that only line A is a well-placed line of best fit
<h3>How to determine the true statement?</h3>
The scatter plots are not given. However, the question can still be answered
The features of the given lines of best fits are:
<u>Line A</u>
- 12 points in total
- Negative correlation
- Passes through the 12 points with 6 on either sides
<u>Line B</u>
- 12 points in total
- Positive correlation
- Passes through the 12 points with 8 and 4 in either sides
For a line of best fit to be well-placed, the line must divide the points on the scatter plot equally.
From the given features, we can see that line A can be considered as a good line of best fit, because it divides the points on the scatter plot equally.
Read more about line of best fit at:
brainly.com/question/14279419
#SPJ1
The associative property makes it so whichever which way the numbers are the answer will be the same but as shown in the picture this isn't true for this statement because the answers become completely different depending on where the numbers are in the equation.
6 divided by 3 is NOT equal to 3 divided by 6 which disproves that property.