"9 and 9?" Did you possibly mean {2, 5, 6, 9}?
The least common multiple of a set of numbers is the smallest integer that can be divided evenly by all of the numbers. In this case, when I saw the 9 and 5, I thought, "45!" but 45 is not evenly divisible by 2 or 6.
So, I tried 90. 90 is indeed divisible by {2, 5, 6, 9}, and is thus the LCM.
Look up and review "Least common multiple."
The Karger's algorithm relates to graph theory where G=(V,E) is an undirected graph with |E| edges and |V| vertices. The objective is to find the minimum number of cuts in edges in order to separate G into two disjoint graphs. The algorithm is randomized and will, in some cases, give the minimum number of cuts. The more number of trials, the higher probability that the minimum number of cuts will be obtained.
The Karger's algorithm will succeed in finding the minimum cut if every edge contraction does not involve any of the edge set C of the minimum cut.
The probability of success, i.e. obtaining the minimum cut, can be shown to be ≥ 2/(n(n-1))=1/C(n,2), which roughly equals 2/n^2 given in the question.Given: EACH randomized trial using the Karger's algorithm has a success rate of P(success,1) ≥ 2/n^2.
This means that the probability of failure is P(F,1) ≤ (1-2/n^2) for each single trial.
We need to estimate the number of trials, t, such that the probability that all t trials fail is less than 1/n.
Using the multiplication rule in probability theory, this can be expressed as
P(F,t)= (1-2/n^2)^t < 1/n
We will use a tool derived from calculus that
Lim (1-1/x)^x as x->infinity = 1/e, and
(1-1/x)^x < 1/e for x finite.
Setting t=(1/2)n^2 trials, we have
P(F,n^2) = (1-2/n^2)^((1/2)n^2) < 1/e
Finally, if we set t=(1/2)n^2*log(n), [log(n) is log_e(n)]
P(F,(1/2)n^2*log(n))
= (P(F,(1/2)n^2))^log(n)
< (1/e)^log(n)
= 1/(e^log(n))
= 1/n
Therefore, the minimum number of trials, t, such that P(F,t)< 1/n is t=(1/2)(n^2)*log(n) [note: log(n) is natural log]
The LCM of 24 and 30 is 120.
I don’t understand the language
Daniel would be 6 daniel was 1 year 2 years ago 1x4=4 plus put on the 2 years =6