Answer:
Y= 2e^(5t)
Step-by-step explanation:
Taking Laplace of the given differential equation:
s^2+3s-10=0
s^2+5s-2s-10=0
s(s+5)-2(s+5) =0
(s-2) (s+5) =0
s=2, s=-5
Hence, the general solution will be:
Y=Ae^(-2t)+ Be^(5t)………………………………(D)
Put t = 0 in equation (D)
Y (0) =A+B
2 =A+B……………………………………… (i)
Now take derivative of (D) with respect to "t", we get:
Y=-2Ae^(-2t)+5Be^(5t) ....................... (E)
Put t = 0 in equation (E) we get:
Y’ (0) = -2A+5B
10 = -2A+5B ……………………………………(ii)
2(i) + (ii) =>
2A+2B=4 .....................(iii)
-2A+5B=10 .................(iv)
Solving (iii) and (iv)
7B=14
B=2
Now put B=2 in (i)
A=2-2
A=0
By putting the values of A and B in equation (D)
Y= 2e^(5t)
The rational numbers would be 3.99 and 4 while there are no irrational number. A rational number is a number that can be written as a fraction for 3.99 it can be written as 399/100 and its the simplest form of the fraction. Also, 4 is a rational number since it can be written as 4/1 which is a fraction.
If x^2+bx+16 has at least one real root, then the equation x^2+bx+16=0 has at least one solution. The discriminant of a quadratic equation is b^2-4ac and it determines the nature of the roots. If the discriminant is zero, there is exactly one distinct real root. If the discriminant is positive, there are exactly two roots. The discriminant of <span>x^2+bx+16=0 is b^2-4(1)(16). The inequality here gives the values of b where the discriminant will be positive or zero:
b^2-4(1)(16) ≥ 0
</span><span>b^2-64 ≥ 0
(b+8)(b-8) </span><span>≥ 0
The answer is that all possible values of b are in the interval (-inf, -8]∪[8,inf) because those are the intervals where </span>(b+8)(b-8) is positive.
RECTANGULAR PRISMS
also known as cuboids ....are all around us. A few of the examples are books, boxes, buildings, bricks, boards, doors, containers, cabinets, mobiles, and laptops.
:-)