Yes, Todd is correct.
y= 2x+2
(1,4)
1=x, 4=y
Plug the numbers in:
4= 2(1)+2
4= 2+2
4=4
Answer:
The polar coordinates are as follow:
a. (6,2π)
b. (18, π/3)
c. (2√2 , 3π/4)
d. (2, 5π /6)
Step-by-step explanation:
To convert the rectangular coordinates into polar coordinates, we need to calculate r, θ .
To calculate r, we use Pythagorean theorem:
r =
---- (1)
To calculate the θ, first we will find out the θ
' using the inverse of cosine as it is easy to calculate.
So, θ
' =
cos
⁻¹ (x/r)
If y ≥ 0 then θ = ∅
If y < 0 then θ = 2
π − ∅
For a. (6,0)
Sol:
Using the formula in equation (1). we get the value of r as:
r = 
r = 6
And ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ (6/6)
∅ =cos
⁻¹ (1) = 2π
As If y ≥ 0 then θ = ∅
So ∅ = 2π
The polar coordinates are (6,2π)
For a. (9,9/
)
Sol:
r = 9 + 3(3) = 18
and ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ (9/18)
∅ = cos
⁻¹ (1/2) = π/3
As If y ≥ 0 then θ = ∅
then θ = π/3
The polar coordinates are (18, π/3)
For (-2,2)
Sol:
r =√( (-2)²+(2)² )
r = 2 √2
and ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ (-2/ 2 √2)
∅ = 3π/4
As If y ≥ 0 then θ = ∅
then
θ = 3π/4
The polar coordinates are (2√2 , 3π/4)
For (-√3, 1)
Sol:
r = √ ((-√3)² + 1²)
r = 2
and ∅ =
cos
⁻¹ (x/r)
∅ =
cos
⁻¹ ( -√3/2)
∅ = 5π /6
As If y ≥ 0 then θ = ∅
So θ = 5π /6
The polar coordinates are (2, 5π /6)
You can describe them by Charts and lines or if it has a single peak
First step: change your pfp
Here are the steps
(4*3)+(4*-2x)=(4x)+(4*-6)
...12+-8x=16x-24x
...-8x+24x-16x=-12
0x=-12
x=-12/0
dividing by 0.
so there is no solution.