Answer:
the answer would be:

Hope that helps! :)
Step-by-step explanation:
Answer: Picture is blury for me I can not see it well enough
Step-by-step explanation:
All i see is the 8 ft and 17ft cant see any of the other numbers
Answer:
1.333 repeated
Step-by-step explanation:
I'll leave the computation via R to you. The
are distributed uniformly on the intervals
, so that

each with mean/expectation
![E[W_i]=\displaystyle\int_{-\infty}^\infty wf_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac w{10i}\,\mathrm dw=5i](https://tex.z-dn.net/?f=E%5BW_i%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20wf_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%20w%7B10i%7D%5C%2C%5Cmathrm%20dw%3D5i)
and variance
![\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3DE%5B%28W_i-E%5BW_i%5D%29%5E2%5D%3DE%5B%7BW_i%7D%5E2%5D-E%5BW_i%5D%5E2)
We have
![E[{W_i}^2]=\displaystyle\int_{-\infty}^\infty w^2f_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac{w^2}{10i}\,\mathrm dw=\frac{100i^2}3](https://tex.z-dn.net/?f=E%5B%7BW_i%7D%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20w%5E2f_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%7Bw%5E2%7D%7B10i%7D%5C%2C%5Cmathrm%20dw%3D%5Cfrac%7B100i%5E2%7D3)
so that
![\mathrm{Var}[W_i]=\dfrac{25i^2}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3D%5Cdfrac%7B25i%5E2%7D3)
Now,
![E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30](https://tex.z-dn.net/?f=E%5BW_1%2BW_2%2BW_3%5D%3DE%5BW_1%5D%2BE%5BW_2%5D%2BE%5BW_3%5D%3D5%2B10%2B15%3D30)
and
![\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5Cleft%5B%5Cbig%28%28W_1%2BW_2%2BW_3%29-E%5BW_1%2BW_2%2BW_3%5D%5Cbig%29%5E2%5Cright%5D)
![\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5B%28W_1%2BW_2%2BW_3%29%5E2%5D-E%5BW_1%2BW_2%2BW_3%5D%5E2)
We have

![E[(W_1+W_2+W_3)^2]](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D)
![=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])](https://tex.z-dn.net/?f=%3DE%5B%7BW_1%7D%5E2%5D%2BE%5B%7BW_2%7D%5E2%5D%2BE%5B%7BW_3%7D%5E2%5D%2B2%28E%5BW_1%5DE%5BW_2%5D%2BE%5BW_1%5DE%5BW_3%5D%2BE%5BW_2%5DE%5BW_3%5D%29)
because
and
are independent when
, and so
![E[(W_1+W_2+W_3)^2]=\dfrac{100}3+\dfrac{400}3+300+2(50+75+150)=\dfrac{3050}3](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D%3D%5Cdfrac%7B100%7D3%2B%5Cdfrac%7B400%7D3%2B300%2B2%2850%2B75%2B150%29%3D%5Cdfrac%7B3050%7D3)
giving a variance of
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{3050}3-30^2=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B3050%7D3-30%5E2%3D%5Cdfrac%7B350%7D3)
and so the standard deviation is 
# # #
A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute
![\mathrm{Var}[W_1+W_2+W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D)
![=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])](https://tex.z-dn.net/?f=%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D%2B2%28%5Cmathrm%7BCov%7D%5BW_1%2CW_2%5D%2B%5Cmathrm%7BCov%7D%5BW_1%2CW_3%5D%2B%5Cmathrm%7BCov%7D%5BW_2%2CW_3%5D%29)
and since the
are independent, each covariance is 0. Then
![\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D)
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{25}3+\dfrac{100}3+75=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B25%7D3%2B%5Cdfrac%7B100%7D3%2B75%3D%5Cdfrac%7B350%7D3)
and take the square root to get the standard deviation.
To answer the question, you need to determine the amount Mr. Traeger has left to spend, then find the maximum number of outfits that will cost less than that remaining amount.
Spent so far:
... 273.98 + 3×7.23 +42.36 = 338.03
Remaining available funds:
... 500.00 -338.03 = 161.97
The cycling outfits are about $80 (slightly less), and this amount is about $160 (slightly more), which is 2 × $80.
Mr. Traeger can buy two (2) cycling outfits with the remaining money.
_____
The remaining money is 161.97/78.12 = 2.0733 times the cost of a cycling outfit. We're sure he has no interest in purchasing a fraction of an outfit, so he can afford to buy 2 outfits.