Answer:
the answer is c
Step-by-step explanation:
Answer:
6
....................................
Answer:
a) <u>0.4647</u>
b) <u>24.6 secs</u>
Step-by-step explanation:
Let T be interval between two successive barges
t(t) = λe^λt where t > 0
The mean of the exponential
E(T) = 1/λ
E(T) = 8
1/λ = 8
λ = 1/8
∴ t(t) = 1/8×e^-t/8 [ t > 0]
Now the probability we need
p[T<5] = ₀∫⁵ t(t) dt
=₀∫⁵ 1/8×e^-t/8 dt
= 1/8 ₀∫⁵ e^-t/8 dt
= 1/8 [ (e^-t/8) / -1/8 ]₀⁵
= - [ e^-t/8]₀⁵
= - [ e^-5/8 - 1 ]
= 1 - e^-5/8 = <u>0.4647</u>
Therefore the probability that the time interval between two successive barges is less than 5 minutes is <u>0.4647</u>
<u></u>
b)
Now we find t such that;
p[T>t] = 0.95
so
t_∫¹⁰ t(x) dx = 0.95
t_∫¹⁰ 1/8×e^-x/8 = 0.95
1/8 t_∫¹⁰ e^-x/8 dx = 0.95
1/8 [( e^-x/8 ) / - 1/8 ]¹⁰_t = 0.95
- [ e^-x/8]¹⁰_t = 0.96
- [ 0 - e^-t/8 ] = 0.95
e^-t/8 = 0.95
take log of both sides
log (e^-t/8) = log (0.95)
-t/8 = In(0.95)
-t/8 = -0.0513
t = 8 × 0.0513
t = 0.4104 (min)
so we convert to seconds
t = 0.4104 × 60
t = <u>24.6 secs</u>
Therefore the time interval t such that we can be 95% sure that the time interval between two successive barges will be greater than t is <u>24.6 secs</u>
Answer:
The loss of marbles did not change the probability.
Step-by-step explanation:
This is because the loss was even you lost 2 marbles from both category which keeps them equal similar to when you set two equations equal to one another and then you subtract 2 from each side the sides are still equal.
Their sum can be greater than two. There is nothing that states that they couldn't be. All it states it that the two factions sums are less than 1. I hoped this helps