Hello!
When finding the perimeter of a rectangle, you have to consider the properties of a rectangle. A rectangle has two pairs of equal sides where one is the width, while the other one is the length.
Now looking back at your question, it says "... a rectangle that is x units wide" ⇒ you let the width = x ; this is the same with "y units long" ⇒ length = y. Perimeter can just be : P = 24.
Therefore,
The equation would be:
x + x + y + y = P.
2x + 2y = P.
(Sub in P = 24)
∴ 2x + 2y = 24. (This should be your answer.)
:) Good luck (Message me if you have any problem)
There are two ways to work this out: normal variables or using "imaginary" numbers.
Normal variables:
![(7+2i)(3-i)\\(7*3)+[7*(-i)]+(3*2i)+[2i*(-i)]\\21-7i+6i-2i^{2}\\\\21-i-2i^{2}](https://tex.z-dn.net/?f=%20%287%2B2i%29%283-i%29%5C%5C%287%2A3%29%2B%5B7%2A%28-i%29%5D%2B%283%2A2i%29%2B%5B2i%2A%28-i%29%5D%5C%5C21-7i%2B6i-2i%5E%7B2%7D%5C%5C%5C%5C21-i-2i%5E%7B2%7D)
Imaginary numbers:
Using the result from earlier:

Now since

, then the expression becomes:
7x + 1 = 2(2x - 1) + 3(x + 1)
7x + 1 = 4x - 2 + 3x + 3
7x + 1 = 7x + 1
Please mark brainliest if right!
Answer:
im not learning this yet so i dont know srry
<span>A container holds 15 pennies, 8 nickels, and 10 dimes.
You will randomly select two coins without replacement.
-->Fill in the probabilities on a tree diagram.</span>