Answer:
x° = 149°
Step-by-step explanation:
According to the <u>Triangle Sum Theorem</u>, the sum of the measures of the angles in every triangle is 180°. Since we are given two angles with measures of m < 86° and m < 63°, then the third angle must be:
m < 86° + m < 63° + m < (angle 3) = 180°
149° + m < ? = 180°
Subtract 149° from both sides to solve for m < (angle 3)
149° - 149° + m < (angle 3) = 180° - 149°
m < ? = 31°
Therefore, the measure of the third angle is 31°.
To find x°, we can reference the <u>Triangle Exterior Angle Postulate</u>, which states that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles.
In other words, the measure of x° = m < 86° + m < 63°
x° = 149°
By the way, m< (angle 3) and x° are also supplementary angles whose sum equal 180°:
x° + m < (angle 3) = 180°
149° + 31° = 180°
Answer:
50°
Step-by-step explanation:
The internal angles on a quadrilateral sum to 360.
So x+10+2x+x+3x=360
7x+10=360
7x=350
x=50
In pretty sure it’s D , making each side equal to 6
The measure of angle EBF where he angle measures are given as m∠ABF = (8w − 6)° and m∠ABE = [2(w + 11)] is m∠EBF = 4w - 28
<h3>How to determine the
measure of
angle EBF?</h3>
The angle measures are given as
If m ∠ A B F = ( 8 w − 6 ) ° m ∠ A B E = [ 2 ( w + 11 ) ] ° m ∠ E B F
Rewrite the angle measures properly.
This is done, as follows
m∠ABF = (8w − 6)°
m∠ABE = [2(w + 11)]
The measure of angle m∠EBF is calculated as:
m∠ABF = m∠ABE + m∠EBF
Substitute the known values in the above equation
8w - 6 = 2(2w + 11) + m∠EBF
Open the brackets
8w - 6 = 4w + 22 + m∠EBF
Evaluate the like terms
m∠EBF = 4w - 28
Hence, the measure of angle EBF where he angle measures are given as m∠ABF = (8w − 6)° and m∠ABE = [2(w + 11)] is m∠EBF = 4w - 28
Read more about angles at
brainly.com/question/25716982
#SPJ1