Answer:0.03
Step-by-step explanation:
Answer:
Function A i think.....
Step-by-step explanation:
Answer: search it and i cant see well so sorry
Step-by-step explanation: research
Consider a homogeneous machine of four linear equations in five unknowns are all multiples of 1 non-0 solution. Objective is to give an explanation for the gadget have an answer for each viable preference of constants on the proper facets of the equations.
Yes, it's miles true.
Consider the machine as Ax = 0. in which A is 4x5 matrix.
From given dim Nul A=1. Since, the rank theorem states that
The dimensions of the column space and the row space of a mxn matrix A are equal. This not unusual size, the rank of matrix A, additionally equals the number of pivot positions in A and satisfies the equation
rank A+ dim NulA = n
dim NulA =n- rank A
Rank A = 5 - dim Nul A
Rank A = 4
Thus, the measurement of dim Col A = rank A = five
And since Col A is a subspace of R^4, Col A = R^4.
So, every vector b in R^4 also in Col A, and Ax = b, has an answer for all b. Hence, the structures have an answer for every viable preference of constants on the right aspects of the equations.
The answer to this query is AA similarity postulate. <span>
<span>Because the triangles given are only similar in angle but
dissimilar in sides which makes it incongruent with respect to the sides, AA
similarity postulate is the exact answer.
SAS ASA are not possible answers. </span></span>