You have the right idea that things need to get multiplied.
What should be done is that the entire fraction needs to get multipled by the lowest common denominator of both denominators.
Let's look at the complex numerator. Its denominators are 5 and x + 6. Nothing is common with these, so both pieces are needed.
The complex denominator has x - 3 as its denominator. With nothing in common between it and the complex numerator, that piece is needed.
So we multiply the entire complex fraction by (5)(x + 6)(x -3).
Numerator: 
= (x+6)(x-3) - (5)(5)(x-3)
= (x+6)(x-3) - 25(x-3)
= (x-3)(x + 6 - 25) <--- by group factoring the common x - 3
= (x -3)(x - 19)
Denominator:

Now we put the pieces together.
Our fraction simplies to (x - 3) (x - 19) / 125 (x + 6)
Answer:
We can conclude that on this case we have identical processes but excersise 17 use another way to present the probability distribution and as we can see the expected value can be viewed as a dot product of two vectors with one vector containing the outcomes and the other the probabilities for each possible outcome.
Step-by-step explanation:
Assuming this previous info:
Exercise 17. Suppose that we convert the table on the previous page displaying the discrete distribution for the number of heads occurring when two coins are flipped to two vectors.
Let vector
Answer:
They are very different because hexagons are amazing and squares are boring.
Step-by-step explanation:
The answer would be 82 millimeters!