2. 4/6 , 6/9
3. 2/4 , 3/6
4. 8/10 , 12/15
5. =
6. >
7. >
8. =
9. =
10. <
11. =
12.
Complete question :
It is estimated 28% of all adults in United States invest in stocks and that 85% of U.S. adults have investments in fixed income instruments (savings accounts, bonds, etc.). It is also estimated that 26% of U.S. adults have investments in both stocks and fixed income instruments. (a) What is the probability that a randomly chosen stock investor also invests in fixed income instruments? Round your answer to decimal places. (b) What is the probability that a randomly chosen U.S. adult invests in stocks, given that s/he invests in fixed income instruments?
Answer:
0.929 ; 0.306
Step-by-step explanation:
Using the information:
P(stock) = P(s) = 28% = 0.28
P(fixed income) = P(f) = 0.85
P(stock and fixed income) = p(SnF) = 26%
a) What is the probability that a randomly chosen stock investor also invests in fixed income instruments? Round your answer to decimal places.
P(F|S) = p(FnS) / p(s)
= 0.26 / 0.28
= 0.9285
= 0.929
(b) What is the probability that a randomly chosen U.S. adult invests in stocks, given that s/he invests in fixed income instruments?
P(s|f) = p(SnF) / p(f)
P(S|F) = 0.26 / 0.85 = 0.3058823
P(S¦F) = 0.306 (to 3 decimal places)
Answer:
9.45z :)
Step-by-step explanation:
Answer:
a)
b) ![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
c)
Step-by-step explanation:
1) Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
2) Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Part a
Part b
![P(X> 2)=1-P(X\leq 2)=1-[P(X=0)+P(X=1)+P(X=2)]](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D)
![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
Part c