Digit 3 on the 10 side has a value of 3 tens or 30. We want to find the digit that has exactly 10 times that value. well, 10 × 30 = 300. So which digit has the value of 300? The other 3 is in the 100's place and it's value is 3 one hundreds or 300. So that is your digit... the 3 in the hundreds place.
The first step is to determine the distance between the points, (1,1) and (7,9)
We would find this distance by applying the formula shown below
![\begin{gathered} \text{Distance = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ \text{From the graph, } \\ x1\text{ = 1, y1 = 1} \\ x2\text{ = 7, y2 = 9} \\ \text{Distance = }\sqrt[]{(7-1)^2+(9-1)^2} \\ \text{Distance = }\sqrt[]{6^2+8^2}\text{ = }\sqrt[]{100} \\ \text{Distance = 10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%28x2-x1%29%5E2%2B%28y2-y1%29%5E2%7D%20%5C%5C%20%5Ctext%7BFrom%20the%20graph%2C%20%7D%20%5C%5C%20x1%5Ctext%7B%20%3D%201%2C%20y1%20%3D%201%7D%20%5C%5C%20x2%5Ctext%7B%20%3D%207%2C%20y2%20%3D%209%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%287-1%29%5E2%2B%289-1%29%5E2%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B6%5E2%2B8%5E2%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%2010%7D%20%5Cend%7Bgathered%7D)
Distance = 10 units
If one unit is 70 meters, then the distance between both entrances is
70 * 10 = 700 meters
Answer:
C because elements are form by atoms and when we study about atom we draw atom like circle
so, that's why I think C is correct
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
Given
- 9 < x - 3 < 1 ( add 3 to each interval )
- 6 < x < 4
Thus integer values which satisfy the inequality are
x = - 5, - 4, - 3, - 2, - 1, 0, 1, 2, 3
Answer:
![\left[\begin{array}{ccc}-25&\dfrac{75}{2}&-\dfrac{25}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26%5Cdfrac%7B75%7D%7B2%7D%26-%5Cdfrac%7B25%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
In the first equality
![5\times \left[\begin{array}{cc}-1&2\\4&8\end{array}\right] =\dfrac{2}{5}m\times \left[\begin{array}{cc}-1&2\\4&8\end{array}\right],](https://tex.z-dn.net/?f=5%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5C4%268%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cdfrac%7B2%7D%7B5%7Dm%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5C4%268%5Cend%7Barray%7D%5Cright%5D%2C)
the matrices in both parts are the saem. The equality will be true if the same matrices are multiplied by the same numbers, so

For the second equality
![(H+[1\ 4\ -2])+[3\ 2\ -6]=[-2\ 3\ -1]+([1\ 4\ -2]+[3\ 2\ -6]),](https://tex.z-dn.net/?f=%28H%2B%5B1%5C%204%5C%20-2%5D%29%2B%5B3%5C%202%5C%20-6%5D%3D%5B-2%5C%203%5C%20-1%5D%2B%28%5B1%5C%204%5C%20-2%5D%2B%5B3%5C%202%5C%20-6%5D%29%2C)
if
, then this equality represents the assotiative property of matrix addition.
Hence,
![m\times H=\dfrac{25}{2}\times [-2\ 3\ -1]=\left[\begin{array}{ccc}-25&\dfrac{75}{2}&-\dfrac{25}{2}\end{array}\right]](https://tex.z-dn.net/?f=m%5Ctimes%20H%3D%5Cdfrac%7B25%7D%7B2%7D%5Ctimes%20%5B-2%5C%203%5C%20-1%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26%5Cdfrac%7B75%7D%7B2%7D%26-%5Cdfrac%7B25%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)