Step-by-step explanation:
> 2×2a²×2a²
8a⁴
> 36a³×1/4a²
9a³×1/a²
9a
> 2⁶
> 5²m²
0 = 0
Simplifying
7x + -11 = 5(x + -2) + 2x + -1
Reorder the terms:
-11 + 7x = 5(x + -2) + 2x + -1
Reorder the terms:
-11 + 7x = 5(-2 + x) + 2x + -1
-11 + 7x = (-2 * 5 + x * 5) + 2x + -1
-11 + 7x = (-10 + 5x) + 2x + -1
Reorder the terms:
-11 + 7x = -10 + -1 + 5x + 2x
Combine like terms: -10 + -1 = -11
-11 + 7x = -11 + 5x + 2x
Combine like terms: 5x + 2x = 7x
-11 + 7x = -11 + 7x
Add '11' to each side of the equation.
-11 + 11 + 7x = -11 + 11 + 7x
Combine like terms: -11 + 11 = 0
0 + 7x = -11 + 11 + 7x
7x = -11 + 11 + 7x
Combine like terms: -11 + 11 = 0
7x = 0 + 7x
7x = 7x
Add '-7x' to each side of the equation.
7x + -7x = 7x + -7x
Combine like terms: 7x + -7x = 0
0 = 7x + -7x
Combine like terms: 7x + -7x = 0
0 = 0
Solving
0 = 0
Given : f(x)= 3|x-2| -5
f(x) is translated 3 units down and 4 units to the left
If any function is translated down then we subtract the units at the end
If any function is translated left then we add the units with x inside the absolute sign
f(x)= 3|x-2| -5
f(x) is translated 3 units down
subtract 3 at the end, so f(x) becomes
f(x)= 3|x-2| -5 -3
f(x) is translated 4 units to the left
Add 4 with x inside the absolute sign, f(x) becomes
f(x)= 3|x-2 + 4| -5 -3
We simplify it and replace f(x) by g(x)
g(x) = 3|x + 2| - 8
a= 3, h = -2 , k = -8
Hope you could understand.
If you have any query, feel free to ask.