The locations of the vertices are shown below:
- (- 5, 4), (- 4, 4), (- 5, 2)
- (- 4, 1), (- 1, 2), (0, - 1), (- 2, - 5)
- (2, 5), (3, 4), (1, 2)
- (3, - 5), (- 2, - 3), (0, - 1)
<h3>What are the coordinates of the images resulting from a translation?</h3>
Herein we find four representations of polygons on Cartesian plane and we must determine the coordinates of the images generated by translation, a kind of rigid transformations. Translation is described by the following operation:
P'(x, y) = P(x, y) + T(x, y)
Where:
- P(x, y) - Original point
- P'(x, y) - Resulting point
- T(x, y) - Translation vector
Case 1 (K(x, y) = (3, - 3), X(x, y) = (4, - 3), R(x, y) = (3, - 5), T(x, y) = (- 8, 7))
K'(x, y) = (3, - 3) + (- 8, 7) = (- 5, 4)
X'(x, y) = (4, - 3) + (- 8, 7) = (- 4, 4)
R'(x, y) = (3, - 5) + (- 8, 7) = (- 5, 2)
Case 2 (E(x, y) = (0, 2), X(x, y) = (3, 3), V(x, y) = (4, 0), Z(x, y) = (2, - 4), T(x, y) = (- 4, - 1))
E'(x, y) = (0, 2) + (- 4, - 1) = (- 4, 1)
X'(x, y) = (3, 3) + (- 4, - 1) = (- 1, 2)
V'(x, y) = (4, 0) + (- 4, - 1) = (0, - 1)
Z'(x, y) = (2, - 4) + (- 4, - 1) = (- 2, - 5)
Case 3 (G(x, y) = (- 4, 5), J(x, y) = (- 3, 4), U(x, y) = (- 5, 2), T(x, y) = (6, 0))
G'(x, y) = (- 4, 5) + (6, 0) = (2, 5)
J'(x, y) = (- 3, 4) + (6, 0) = (3, 4)
U'(x, y) = (- 5, 2) + (6, 0) = (1, 2)
Case 4 (V(x, y) = (0, 0), Y(x, y) = (- 5, 2), F(x, y) = (- 3, 4), T(x, y) = (3, - 5))
V'(x, y) = (0, 0) + (3, - 5) = (3, - 5)
Y'(x, y) = (- 5, 2) + (3, - 5) = (- 2, - 3)
F'(x, y) = (- 3, 4) + (3, - 5) = (0, - 1)
To learn more on rigid transformations: brainly.com/question/28004150
#SPJ1