Based on the information given, the computation shows that the distance between them is 2.47 miles.
<h3>
Solving the distance.</h3>
Since one has bearing 41°45', this will be: = 41° + (45/60) = 41° + 0.75 = 41.75°.
The other has bearing 59°13'. This will be:
= 59° + (13/60) = 59° + 0.22 = 59.22°.
The difference of the angles will be:
= 59.22° - 41.75°
= 17.47°
Let the distance between them be represented by c. Therefore, we'll use cosine law to solve the question. This will be:
c² = a² + b² - 2ab cos 17.47°
c² = 20² + 20² - (2 × 20 × 20 × 0.19)
c² = 6.07459
c = 2.47
Learn more about distance on:
brainly.com/question/2854969
Answer:

Step-by-step explanation:

Just go one point at a time on your graph:
What does y equal when x is zero?
When x is 1?
When x is 2?
That's how you plot a graph.
X would be 0 while Y would be 4
3x+y=4
-(2x+y=4)
----------------
x=0
Plug in x to any of those two equations in their original form
3(0)+y=4
0 + y = 4
y = 4
Slope-intercept form: y = mx + b
(m is the slope, b is the y-intercept or the y value when x = 0 --> (0, y) or the point where the line crosses through the y-axis)
For lines to be parallel, they have to have the same slope.
y = 6x + 6 The slope of this line is 6, so the parallel line's slope is also 6.
Now that you know m = 6, substitute/plug it into the equation:
y = mx + b Plug in 6 for "m" in the equation
y = 6x + b To find "b", plug in the point (20, 1) into the equation
1 = 6(20) + b
1 = 120 + b Subtract 120 on both sides to get "b" by itself
1 - 120 = 120 - 120 + b
-119 = b Now that you know b = -119, plug it into the equation
y = 6x - 119