the Venn diagram below, which statement must be true? If a number is an irrational number, it must also be a rational number. All integers are also whole numbers. All integers are also rational numbers. All natural numbers are irrational numbers.-by-step explanation:
Answer: C. y=15x
Step-by-step explanation:
i did the quiz !
GIVE ME A THANK YOU :)
Answer:
Step-by-step explanation:
![2x > 30+\frac{5}{4x} \\2x-\frac{5}{4x} > 30\\\frac{8x^2-5}{4x} > 30\\case~1\\if~x > 0\\8x^2-5 > 120x\\8x^2-120x > 5\\x^2-15x > \frac{5}{8} \\adding~(-\frac{15}{2} )^2~to~both~sides\\(x-\frac{15}{2} )^2 > \frac{5}{8}+\frac{225}{4} \\(x-\frac{15}{2} )^2 > \frac{455}{8} \\x-\frac{15}{2} < -\sqrt{\frac{455}{8} } \\x < \frac{15}{2}-\sqrt{\frac{455}{8} } \\or~x < 0\\rejected~as~x > 0](https://tex.z-dn.net/?f=2x%20%3E%2030%2B%5Cfrac%7B5%7D%7B4x%7D%20%5C%5C2x-%5Cfrac%7B5%7D%7B4x%7D%20%3E%2030%5C%5C%5Cfrac%7B8x%5E2-5%7D%7B4x%7D%20%3E%2030%5C%5Ccase~1%5C%5Cif~x%20%3E%200%5C%5C8x%5E2-5%20%3E%20120x%5C%5C8x%5E2-120x%20%3E%205%5C%5Cx%5E2-15x%20%3E%20%5Cfrac%7B5%7D%7B8%7D%20%5C%5Cadding~%28-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2~to~both~sides%5C%5C%28x-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%20%3E%20%5Cfrac%7B5%7D%7B8%7D%2B%5Cfrac%7B225%7D%7B4%7D%20%5C%5C%28x-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%20%3E%20%5Cfrac%7B455%7D%7B8%7D%20%5C%5Cx-%5Cfrac%7B15%7D%7B2%7D%20%3C%20-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%20%5C%5Cx%20%3C%20%5Cfrac%7B15%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5Cor~x%20%3C%200%5C%5Crejected~as~x%20%3E%200)
![x-\frac{15}{2} > \sqrt{\frac{455}{8} } \\x > \frac{15}{2} +\sqrt{\frac{455}{8} }](https://tex.z-dn.net/?f=x-%5Cfrac%7B15%7D%7B2%7D%20%3E%20%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5Cx%20%3E%20%5Cfrac%7B15%7D%7B2%7D%20%2B%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D)
case~2
![if~x < 0\\8x^2-5 < 120x\\8x^2-120x < 5\\x^2-15x < \frac{5}{8} \\adding~(-\frac{15}{2} )^2\\(x-\frac{15}{2} )^2 < \frac{5}{8} +(-\frac{15}{2} )^2\\|x-\frac{15}{2} | < \frac{5+450}{8} \\-\sqrt{\frac{455}{8} } < x-\frac{15}{2} < \sqrt{\frac{455}{8} } \\\frac{15}{2} -\sqrt{\frac{455}{8} } < x < \frac{15}{2} +\sqrt{\frac{455}{8} } \\but~x < 0\\7.5-\sqrt{\frac{455}{8} } < x < 0](https://tex.z-dn.net/?f=if~x%20%3C%200%5C%5C8x%5E2-5%20%3C%20120x%5C%5C8x%5E2-120x%20%3C%205%5C%5Cx%5E2-15x%20%3C%20%5Cfrac%7B5%7D%7B8%7D%20%5C%5Cadding~%28-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%5C%5C%28x-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%20%3C%20%5Cfrac%7B5%7D%7B8%7D%20%2B%28-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%5C%5C%7Cx-%5Cfrac%7B15%7D%7B2%7D%20%7C%20%3C%20%5Cfrac%7B5%2B450%7D%7B8%7D%20%5C%5C-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%3C%20x-%5Cfrac%7B15%7D%7B2%7D%20%3C%20%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5C%5Cfrac%7B15%7D%7B2%7D%20-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%3C%20x%20%3C%20%5Cfrac%7B15%7D%7B2%7D%20%2B%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5Cbut~x%20%3C%200%5C%5C7.5-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%3C%20x%20%3C%200)
54554/99999. I think I am right but sorry if I am wrong.
100% of the original number