----------------------------------------------------------------
Method 1
----------------------------------------------------------------
Since the numerators are the same, the smaller the denominators, the greater the fraction is.
Arranging from the least to the greatest

----------------------------------------------------------------
Method 2
----------------------------------------------------------------
Lets change all to the same denominators



Now that all the denominators are the same, we can arrange the fractions by comparing the numerators. The bigger the numerators, the greater the fraction.
Arranging from the least to the greatest
If there are $22 made per hour for 7 hours, you’d add 22 per hour in your table. 1 hour=$22, 2 hours=$44, 3 hours=$66, and so forth. make a table of these numbers up to 7 hours.
You can do 8 + 8 = 16 then minus 1 cuz thats how much you added
Answer:

Explanation:
Here, we want to use the factor theorem to check if the given linear expression is a factor of the binomial
Now, according to the factor theorem, a factor of a polynomial would leave no remainder when divided by it
Mathematically, it means when we substitute the factor value into the polynomial, it is expected that the remainder is zero is the substituted is a factor of the polynomial
We set x-2 to zero:

Now, we substitute 2 into the polynomial as follows:

There is a remainder of -28 and thus, the linear factor is not a factor of the binomial
Tossing a coin is a binomial experiment.
Now lets say there are 'n' repeated trials to get heads. Each of the trials can result in either a head or a tail.
All of these trials are independent since the result of one trial does not affect the result of the next trial.
Now, for 'n' repeated trials the total number of successes is given by

where 'r' denotes the number of successful results.
In our case
and
,
Substituting the values we get,


Therefore, there are 1352078 ways to get heads if a person tosses a coin 23 times.