980,507 i believe... maybe
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Answer:
34,220
Step-by-step explanation:
Because order doesn't matter, but the numbers can't be repeated, we need to find the number of combinations where 3 individual numbers can be chosen out of 60 possible numbers using the binomial coefficient:

Thus, Elias can make 34,220 unique 3-number codes given 60 different numbers.
S = πr(r + √(h² + r²))
400.2 = 3.14(6)(6 + √(h² + 6²))
400.2 = 18.84(6 + √(h² + 36))
18.84 18.84
21¹⁰⁹/₄₇₁ = 6 + √(h² + 36))
- 6 - 6
15¹⁰⁹/₄₇₁ = √(h² + 36)
231²²¹⁰⁰⁵/₂₂₁₈₄₁ = h² + 36
- 36 - 36
195²²¹⁰⁰⁵/₂₂₁₈₄₁ = h²
14 ≈ h
Answer:
the answer to this question would be RT=16 Please mark brainliest!