Answer:
II only ⇒ QR ≅ SP
Step-by-step explanation:
It definitely can’t be I or III becasue SR is smaller than QR, and PR is longer than QR. So both of those lines are not congruent to QR because they have different lengths.
Answer:
of iv
+
2
(
4
−
)
=
2
+
6
−
3
x+2({\color{#c92786}{4-x}})=2x+6-3x
x+2(4−x)=2x+6−3x
+
2
(
−
+
4
)
=
2
+
6
−
3
Step-by-step explanation:
follow me
Answer:
If the absolute value expression is not equal to zero, the expression inside an absolute value can be either positive or negative. So, there can be at most two solutions. Looking at this graphically, an absolute value graph can intersect a horizontal line at most two times.
Check the picture below. so, that'd be the triangle's sides hmmm so let's use Heron's Area formula for it.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{15}~,~\stackrel{y_2}{15}) ~\hfill a=\sqrt{[ 15- 10]^2 + [ 15- 5]^2} \\\\\\ ~\hfill \boxed{a=\sqrt{125}} \\\\\\ (\stackrel{x_1}{15}~,~\stackrel{y_1}{15})\qquad (\stackrel{x_2}{30}~,~\stackrel{y_2}{9}) ~\hfill b=\sqrt{[ 30- 15]^2 + [ 9- 15]^2} \\\\\\ ~\hfill \boxed{b=\sqrt{261}}](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B15%7D~%2C~%5Cstackrel%7By_2%7D%7B15%7D%29%20~%5Chfill%20a%3D%5Csqrt%7B%5B%2015-%2010%5D%5E2%20%2B%20%5B%2015-%205%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Ba%3D%5Csqrt%7B125%7D%7D%20%5C%5C%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B15%7D~%2C~%5Cstackrel%7By_1%7D%7B15%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B30%7D~%2C~%5Cstackrel%7By_2%7D%7B9%7D%29%20~%5Chfill%20b%3D%5Csqrt%7B%5B%2030-%2015%5D%5E2%20%2B%20%5B%209-%2015%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bb%3D%5Csqrt%7B261%7D%7D)
![(\stackrel{x_1}{30}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill c=\sqrt{[ 10- 30]^2 + [ 5- 9]^2} \\\\\\ ~\hfill \boxed{c=\sqrt{416}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B30%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B10%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20~%5Chfill%20c%3D%5Csqrt%7B%5B%2010-%2030%5D%5E2%20%2B%20%5B%205-%209%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bc%3D%5Csqrt%7B416%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{125}\\ b=\sqrt{261}\\ c=\sqrt{416}\\ s\approx 23.87 \end{cases} \\\\\\ A\approx\sqrt{23.87(23.87-\sqrt{125})(23.87-\sqrt{261})(23.87-\sqrt{416})}\implies \boxed{A\approx 90}](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B125%7D%5C%5C%20b%3D%5Csqrt%7B261%7D%5C%5C%20c%3D%5Csqrt%7B416%7D%5C%5C%20s%5Capprox%2023.87%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%5Capprox%5Csqrt%7B23.87%2823.87-%5Csqrt%7B125%7D%29%2823.87-%5Csqrt%7B261%7D%29%2823.87-%5Csqrt%7B416%7D%29%7D%5Cimplies%20%5Cboxed%7BA%5Capprox%2090%7D)