Answer:
-27/64p^3
Tell me if you want a step by step. :)
The inverse of function f(x) = 9x+7 is f-1(x) = x/9 - 7/9
<h3>How to determine the inverse of the function?</h3>
The function is given as:
f(x) = 9x + 7
Express f(x) as y
y = 9x + 7
Swap the positions of x and y in the above equation
x = 9y + 7
Subtract 7 from both sides
9y = x - 7
Divide through by 9
y = x/9 - 7/9
Express as an inverse function
f-1(x) = x/9 - 7/9
Hence, the inverse of function f(x) = 9x+7 is f-1(x) = x/9 - 7/9
Read more about inverse functions at:
brainly.com/question/14391067
#SPJ1
Answer:
height is =area dived by base
Step-by-step explanation:
156 divide 13 is 12
so the answer of height is 12.......hope u understand dear
Answer:
480 is the correct answer
Step-by-step explanation:
All you have to do is multiply all together.
May I have brainliest?
Answer:
titutex=cos\alp,\alp∈[0:;π]
\displaystyle Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+
1−x
2
∣=
2
(2x
2
−1)\Leftright∣cos\alp+sin\alp∣=
2
(2cos
2
\alp−1)
\displaystyle |\N {\sqrt{2}}cos(\alp-\frac{\pi}{4})|=\N {\sqrt{2}}cos(2\alp )\Right \alp\in[0\: ;\: \frac{\pi}{4}]\cup [\frac{3\pi}{4}\: ;\: \pi]∣N
2
cos(\alp−
4
π
)∣=N
2
cos(2\alp)\Right\alp∈[0;
4
π
]∪[
4
3π
;π]
1) \displaystyle \alp \in [0\: ;\: \frac{\pi}{4}]\alp∈[0;
4
π
]
\displaystyle cos(\alp -\frac{\pi}{4})=cos(2\alp )\dotscos(\alp−
4
π
)=cos(2\alp)…
2. \displaystyle \alp\in [\frac{3\pi}{4}\: ;\: \pi]\alp∈[
4
3π
;π]
\displaystyle -cos(\alp -\frac{\pi}{4})=cos(2\alp )\dots−cos(\alp−
4
π
)=cos(2\alp)…
1
Top
Display