Answer:
Step-by-step explanation:
5 dimes and 8 quarters :)
Answer:
$6261.61
Step-by-step explanation:
The solution to the differential equation is the exponential function ...
A(t) = 5000e^(0.0225t)
We want the account value after 10 years:
A(10) = 5000e^(0.225) = 6261.61
The value of the account after 10 years will be $6,261.61.
_____
The rate of change equation basically tells you that interest is compounded continuously. After working interest problems for a while you know the formula for that is the exponential formula A = A0·e^(rt).
Or, you can solve the differential equation using separation of variables:
dA/A = 0.0225dt
ln(A) = 0.0225t +C . . . . integrate
A(t) = A0·e^(0.0225t) = 5000·e^(0.0225t) . . . . solution for A(0) = 5000
Find rates of change until you find a constant.
dy/dx=1,2,3,4,5,6
d2y/dx2=1,1,1,1,1
So the acceleration, d2y/d2x, is constant. This means that this is a quadratic sequence of the form a(n)=an^2+bn+c. So we can set up a system of equations to solve for the values of a,b, and c. Using the first three points, (1,1), (2,2), and (3,4) we have:
9a+3b+c=4, 4a+2b+c=2, and a+b+c=1 getting the differences...
5a+b=2 and 3a+b=1 and getting this difference...
2a=1, so a=1/2 making 5a+b=2 become:
2.5+b=2, so b=-1/2, making a+b+c=1 become:
1/2-1/2+c=1, so c=1 so the rule is:
a(n)=0.5x^2-0.5x+1 or if you prefer to not have decimals
a(n)=(x^2-x+2)/2
The building is about 70.95 feet tall.
The building and the laser range will form a right triangle. You can use the Pythagorean Theorem to find the height of the building.
112^2 + b^2 = 131^2
b = 67.95
However, don't forget to add on 3 because that is the height of the laser range.