Answer:
n > 96
Therefore, the number of samples should be more than 96 for the width of their confidence interval to be no more than 10mg
Step-by-step explanation:
Given;
Standard deviation r= 25mg
Width of confidence interval w= 10mg
Confidence interval of 95%
Margin of error E = w/2 = 10mg/2 = 5mg
Z at 95% = 1.96
Margin of error E = Z(r/√n)
n = (Z×r/E)^2
n = (1.96 × 25/5)^2
n = (9.8)^2
n = 96.04
n > 96
Therefore, the number of samples should be more than 96 for the width of their confidence interval to be no more than 10mg
Answer:
5/8
Step-by-step explanation:
A. 2/3 × 4/5 × m = 1/3 B. 4/5 × 2/3 × m = 1/3
8/15 × m = 1/3 8/ 15 × m = 1/3
m = 1/3 ÷ 8/15 m = 1/3 ÷ 8/15
m = 1/3 ×15/8 m = 1/3 × 15/8
m = 5/8 m = 5/8
C. 2/3 × 4/5 = 1/3 ÷ m
8/15 = 1/3 × 1/m
8/15 = 1/3m cross multiply
(3m) × (8) = 15
24m = 15
m = 15/24
m= 5/8
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823