1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Komok [63]
3 years ago
15

If the mass of an object is 200kg and the applied force is 2600N, calculate the Acceleration.​

Physics
1 answer:
Aliun [14]3 years ago
6 0

Answer:

<em>13 m/s²</em>

Explanation:

Mass of object = 200 Kg

Applied force = 2600 N

Acceleration  = ?

Solution:

Definition:

The acceleration is rate of change of velocity of an object with respect to time.

Formula:

a = Δv/Δt

a = acceleration

Δv = change in velocity

Δt = change in time

Units:

The unit of acceleration is m.s⁻².

Acceleration can also be determine through following formula,

F = m × a

a = F/m  (N = kgm/s²)

a = 2600 kgm/s² / 200 Kg

a = 13 m/s²

You might be interested in
For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo
pickupchik [31]
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
4 0
3 years ago
Without friction, what happens? Check ALL
Fudgin [204]
A is the answerrrrrrrrrrrr
7 0
3 years ago
Please help me question 8
Rudik [331]
I beleive that the answer is B.
7 0
3 years ago
Derive an expression for the gravitational potential energy of a system consisting of Earth and a brick of mass m placed at Eart
Arlecino [84]

Answer:

The gravitational potential energy of a system is -3/2 (GmE)(m)/RE

Explanation:

Given

mE = Mass of Earth

RE = Radius of Earth

G = Gravitational Constant

Let p = The mass density of the earth is

p = M/(4/3πRE³)

p = 3M/4πRE³

Taking for instance,a very thin spherical shell in the earth;

Let r = radius

dr = thickness

Its volume is given by;

dV = 4πr²dr

Since mass = density* volume;

It's mass would be

dm = p * 4πr²dr

The gravitational potential at the center due would equal;

dV = -Gdm/r

Substitute (p * 4πr²dr) for dm

dV = -G(p * 4πr²dr)/r

dV = -G(p * 4πrdr)

The gravitational potential at the center of the earth would equal;

V = ∫dV

V = ∫ -G(p * 4πrdr) {RE,0}

V = -4πGp∫rdr {RE,0}

V = -4πGp (r²/2) {RE,0}

V = -4πGp{RE²/2)

V = -4Gπ * 3M/4πRE³ * RE²/2

V = -3/2 GmE/RE

The gravitational potential energy of the system of the earth and the brick at the center equals

U = Vm

U = -3/2 GmE/RE * m

U = -3/2 (GmE)(m)/RE

5 0
3 years ago
Can you please answer this question.
Montano1993 [528]
Mechanical and chemical.  Mechanical breaks down food into smaller pieces. Chemical breaks it down into simpler nutrients that can then be used by cells. Hope this helps!
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the function of a transformer?Why is this done?
    12·1 answer
  • The brightness of a star is determined
    11·2 answers
  • Find the poing of center of gravity<br><br>plz show the steps...​
    8·1 answer
  • What happens after u thruster is fired to push a spacecraft
    10·1 answer
  • Hold a pencil in front of your eye at a position where its blunt end just blocks out the Moon.
    10·1 answer
  • A 5kg wheel rolls off a flat roof of a 50 m tall building at 12m/s.
    8·1 answer
  • Define fundamental unit.​
    14·1 answer
  • 1. The mass defect of iron-56 is 0.52875 amu. What is the energy equivalent of this mass?
    11·1 answer
  • A 150 g ceramic serving bowl is warmed 52.0°C when it absorbs 2.2 kcal of heat from a serving of hot food. What is the specific
    11·1 answer
  • An experiment is performed on an unknown material and produces the given heat curve. The temperature of the material is shown as
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!