Step-by-step explanation:
figure of speech in which a character or speaker addresses someone who is absent. This could be a person they know or don’t know someone who is alive or dead, or someone who never existed at all. It might also be a non-human animal, an abstracted, but personified force, or even an object. Often, this technique is used when a speaker addresses a god or group of gods.
Apostrophe Examples
Twinkle, twinkle, little star, how I wonder what you are. ( ...
O holy night! ...
Then come, sweet death, and rid me of this grief. ( ...
O, pardon me, thou bleeding piece of earth. ( ...
Roll on, thou deep and dark blue Ocean – roll! ( ...
Welcome, O life!
Regardless of the size of the square, half the diagonal is (√2)/2 times the side of the square.
The ratio is (√2)/2.
_____
Consider a square of side length 1. The Pythagorean theorem tells you the diagonal measure (d) is ...
... d² = 1² +1² = 2
... d = √2
The distance from the center of the square to one of its corners (on the circumscribing circle) is then d/2 = (√2)/2. This is the radius of the circle in which our unit square is inscribed.
Since we're only interested in the ratio of the radius to the side length, using a side length of 1 gets us to that ratio directly.
Answer:
table d
Step-by-step explanation:
Answer:
![m \times H=\left[\begin{array}{c c c}\boxed{-9} & \boxed{36} & \boxed{-\dfrac{9}{2}}\end{array}\right]](https://tex.z-dn.net/?f=m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cboxed%7B-9%7D%20%26%20%5Cboxed%7B36%7D%20%26%20%5Cboxed%7B-%5Cdfrac%7B9%7D%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
<u>Calculate the value of m</u>
Given:
![3\left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]=\dfrac{2}{3}m \times \left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B2%7D%7B3%7Dm%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D)
Therefore:



<u>Calculate the value of H</u>
Given:
![\left(H+ \left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]\right)+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]=\left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]+\left(\left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]\right)](https://tex.z-dn.net/?f=%5Cleft%28H%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%5Cright%29%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%5Cright%29)
Therefore:
![\implies H= \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20H%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />
<u>Calculating m × H</u>
<u />
<u />![\implies m \times H=\dfrac{9}{2} \times \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cdfrac%7B9%7D%7B2%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />![\implies m \times H=\left[\begin{array}{c c c}\dfrac{9}{2}(-2) & \dfrac{9}{2}(8) & \dfrac{9}{2}(-1)\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cdfrac%7B9%7D%7B2%7D%28-2%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%288%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%28-1%29%5Cend%7Barray%7D%5Cright%5D)
<u />