Non-linear
The line should be an exponential function, as it halves in mass every time a certain amount of time has passed.
1.09÷3= .3633 each
4.49÷12= .37416 each
8.78÷24= .3658 each
so the first one
Answer:
Step-by-step explanation:
Hello!
I'll express all the given percentages as probabilities:
Given the events:
Banking online (Bo)
Under the age of 50 (<50)
P(Bo)= 0.30
P(<50)= 0.40
P(Bo ∩ <50)= 0.25
1) What percentage of adults do not conduct their banking online?
The event "adults that do not conduct their baking online" is the complement of the event "adults that conduct their baking online" Symbolically 
P(
)= 1 - P(Bo)= 1 - 0.30 = 0.70
2) What type of probability is 25%?
The probability P(Bo ∩ <50)= 0.25 is a joint probability, it indicates the intersection between both events.
3) Construct a contingency table showing all joint and marginal probabilities.
Check attachment.
4) What is the probability that an individual conducts banking online given that the individual is under the age of 50?
Symbolically:
P(Bo/<50)= <u> P(Bo ∩ <50) </u> = <u> 0.25 </u> = 0.625
P(<50) 0.40
I hope it helps!
Sorry people send you links instead of actually helping you
Answer:
0.0025 = 0.25% probability that both are defective
Step-by-step explanation:
For each item, there are only two possible outcomes. Either they are defective, or they are not. Items are independent of each other. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
5 percent of these are defective.
This means that 
If two items are randomly selected as they come off the production line, what is the probability that both are defective
This is P(X = 2) when n = 2. So


0.0025 = 0.25% probability that both are defective