Answer:
≈ 83.9 cm²
Step-by-step explanation:
<u>Given:</u>
- P = a+b+c = 44 cm
- a = 18 cm
- b = 12 cm
<u>Then:</u>
- c= P -(a+b) = 44 -(18+12) = 14 cm
<u>Area of the triangle is found by using Herons formula:</u>
where s = P/2 = 44/2 = 22 cm
- A = √22(22-18)(22-12)(22-14) = √22*4*10*8= √7040 ≈ 83.9 cm²
Answer:
Vacuous proof is used.
Step-by-step explanation:
Given:
Proposition p(n) :
"if n is a positive integer greater than 1, then n² > n"
To prove:
Prove the proposition p (0)
Solution:
Using the proposition p(n) the proposition p(0) becomes:
p(0) = "if 0 is a positive integer greater than 1, then 0² > 0"
The proposition that "0 is a positive integer greater than 1" is false
Since the premises "if 0 is a positive integer greater than 1" is false this means the overall proposition/ statement is true.
Thus this is the vacuous proof which states that:
if a premise p ("0 is a positive integer greater than 1") is false then the implication or conditional statement p->q ("if n is a positive integer greater than 1, then n² > n") is trivially true.
So in vacuous proof, the implication i.e."if n is a positive integer greater than 1, then n2 > n." is only true when the antecedent i.e. "0 is a positive integer greater than 1" cannot be satisfied.
Answer:
105.84 cm²
129 ft²
Step-by-step explanation:
please mark me as brainliest
Answer:
A. 55°
B. 71°
C. 100°
D. 65°
E. 120°
F. 155°
G. 147°
H. 36°
I. 70°
J. 54°
K. 24°
L. 40°
Step-by-step explanation:
A. 180 - (90 + 35) = 55°
B. 180 - (34 + 75) = 71°
C. 180 - (43 + 38) = 100°
D. 180 - 50 = 130 / 2 = 65°
E. 180 - (90 + 30) = 60°
180 - 60 = 120°
F. 180 - (120 + 35) = 25°
180 - 25 = 155°
G. 180 - 145 = 35 + 112 = 148°
H. 180 - (40 + 26) = 144°
180 - 144 = 36°
I. 180 - (60 + 65) = 125°
180 - 125 = 55°
180 - (55 + 50) = 75°
180 - (75 + 35) = 70°
J. 180 - 116 = 64°
180 - (64 + 62) = 54°
K. 180 - (138 +18) = 24°
L. 180 - (80 + 60) = 40°
Answer:
Step-by-step explanation:
If
72 cents ---> 6 ounces
Xcents -----> 8 ounces
then
X = [(72)*(8)] / 6
X = 96 cents
Best regards