Answer:
Ummmmm none I guess
Step-by-step explanation:
rawr
Answer:


Find the multiplicative inverse of the following
(i) -13 (ii) -13/19 (iii) 1/5 (iv) -5/8 × -3/7 (v) -1 × -2/5
(vi) -1
Solution:
The reciprocal of a given rational number is known as its multiplicative inverse. The product of a rational number and its multiplicative inverse is 1.
(i) The Multiplicative inverse of -13 is -1/13
∵ -13 × (-1/13) = 1
(ii) The Multiplicative inverse of -13/19 is -19/13
∵ -13/19 × (-19/13) = 1
(iii) The Multiplicative inverse of 1/5 is 5
∵ 1/5 × 5 = 1
(iv) The Multiplicative inverse of -5/8 × -3/7 is 56/15
∵ -5/8 × (-3/7) = 15/56 and 15/56 × 56/15 = 1
(v) The Multiplicative inverse of -1 × -2/5 is 5/2
∵ -1 × (-2/5) = 2/5 and 2/5 × 5/2 = 1
(vi) The Multiplicative inverse of -1 is -1
∵ -1 × (-1) = 1
Answer:
y=(3/8)x+5.75
Step-by-step explanation:
y=mx+b
m=slope
b=y-intercept
m=(8-5)/(6+2)=3/8
y=mx+b
5=3/8(-2)+b
5=-3/4+b
b=5.75
y=mx+b
y=(3/8)x+5.75
The correct answer is c=26
The square root of 676 was incorrect.