Answer:
12. 1 second, 35 ft; 2 seconds, 32 ft
13. (t, y) = (1.4 seconds, 37.6 feet)
14. 37.6 ft; the vertex is the highest point
Step-by-step explanation:
12. You have properly answered question 12.
After 1 second, the height is 35 feet; after 2 seconds, it is 32 feet.
__
13. My method of choice is to plot the graph on a graphing calculator and let it show me the coordinates of the vertex when I highlight that point. (See attached.) The vertex is ...
(t, y) = (1.4, 37.6)
__
14. The graph is a graph of height when the object is launched with a vertical velocity of 45 ft/s. So, the maximum of the graph will correspond to the maximum height of the object. The vertex is that maximum point, and its y-coordinate is that maximum height.
The maximum height is 37.6 feet.
5 to 1 because they lost 10 games in the time they lost 2 games so it would in smallest form at 5 to 1
The answer is 2.36 :) :) :) :) :)
I tried to show all work.
Answer:
Step-by-step explanation:
The segment joining an original point with its rotated image forms a chord of the circle of rotation containing those two points. The center of the circle is the center of rotation.
This means you can find the center of rotation by considering the perpendicular bisectors of the segments joining points with their images. Here, the only proposed center that is anywhere near the perpendicular bisector of DE is point M.
__
Segment AD is perpendicular to corresponding segment FE, so the angle of rotation is 90°. (We don't know which way (CW or CCW) unless we make an assumption about which is the original figure.)